Tektronix

先进的科学研究,尖端的测 试测量

Advanced Measurement for

Advanced Technology

CN FAE

8 JUNE 2016

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 2: Power semiconductor devices

PART 5:

Power management

PART 3:

MEMS and Semiconductor Sensors

PART 6: Opto-electronics

Nanoscale Materials & Devices

- Nanotechnology is science and engineering conducted at the nanoscale level
 - 1 to 100 nanometers
- Requires multiple disciplines:
 - Physics, material science, chemistry and measurement system design
- Nanoscale technologies have the potential to improve our quality of life
 - Medical delivery systems & detection
 - Faster electronics
 - Cheaper energy
 - Bio- and chemical detection systems

Nanoscale Materials & Devices

- Graphene:
 - 100 X stronger than the strongest steel
 - conducts heat and electricity efficiently
 - nearly transparent
 - And so on....

By Dexter Johnson

Posted 19 May 2016 | 20:00 GMT

Illustration: Moscow Institute of Physics and Technology

8 JUNE 2016

Metals and insulators differ in the energy bands of their electrons. In a non-conducting material, the energy bands are either full or empty, and are separated by an energy gap. In a metal, one of the bands is only partially filled.

Researchers at the Moscow Institute of Physics and Technology (MIPT) <u>new tunnel</u> <u>transistor based on bilayer</u> <u>graphene</u>

- reduce its power consumption
- increase in processors' clock speeds(two orders of magnitude)

http://spectrum.ieee.org/nanoclast/semiconductors/materials/bilayer-graphene-could-usher-in-new-tunnel-transistor

to I

Wideband Gap material : GaN, SiC

K

WBG material: GaN, SiC

- Greater emphasis on *commercialization* of devices made from wide bandgap materials, especially SiC and GaN
 - Benefits of SiC and GaN:
 - Faster switching speed than Si → smaller passive components → smaller size and lower weight → higher efficiency
 - Lower switching losses than Si (especially lower recovery losses in diodes)
 - Lower leakage currents → better switch
 - Higher power density
 - Pack more power into smaller areas \rightarrow higher efficiency
 - Higher operating temperature (especially SiC) → able to handle higher power with fewer parametric changes and without requiring cooling systems as extensive as silicon-based electronics → smaller size and higher efficiency

What is a Source Measure Unit (SMU)?

- Simultaneously source and measure voltage and/or current
- Perform resistance measurements

Keithley SMU Family - Instruments

2400 SourceMeter SMU Instruments

- Family of single-channel models with I-V capability from 1100V to 100nV and 10.5A pulse to 1pA
- Smart alternative to separate Power Supplies and Digital Multimeters (DMMs)
- Convenient DMM-like user interface

2450 & 2460 Touchscreen SourceMeter SMU Instruments

Industry-first 5" color capacitive touchscreen GUI

Test up to 200V and 1A (2450) or up to 100 V and 7A (2460)

Sub pA and sub μV resolution

Extendence E

2600B System SourceMeter SMU Instruments

- Family of dual- or single-channel models with I-V capability from 10A pulse to 0.1fA and 200V to 100nV
- TSP® (Test Script Processor) technology for best-in-class throughput and lowest cost of test
- Browser-based GUI enables testing on any PC from anywhere in the world

2650A Hi-Power System SourceMeter SMU Instruments

- Source and measure up to 3kV or 50A pulse, with best-in-class low current resolution
- Up to 2000W pulse or 200W DC power
- Optimized for characterizing and testing high power semiconductors, electronics, and materials

Keithley SMU Family - Systems

Parametric Curve Tracers

- Power device characterization up to 3kV and 100A including high quality instruments, cables, test fixturing, and software
- ACS Basic Edition software features real-time curve tracing and full parametric characterization modes
- Easily re-configurable to meet changing test needs

4200-SCS Semiconductor Parameter Analyzer

- An integrated analyzer for complete and precise characterization: I-V, C-V, Ultra-Fast I-V, and Pulse measurements
- Characterize devices, materials, and semiconductor processes with sub-fA resolution
- Easy-to-use Windows[®] GUI, modular architecture, and over 450 user-modifiable test applications simplify complex measurement

S530 Parametric Test Systems

- High-speed semiconductor parametric testing with low cost of ownership
- Designed for production and lab environments managing a broad range of devices and product wafers
- Proven SMU instrumentation technology ensures high measurement accuracy and repeatability

S500 Parametric Test Systems

- Highly configurable and scalable SMU instrument-based system
- Semiconductor device testing along with Automated Characterization Suite (ACS) at the device, wafer, or cassette level
- Ideal for SMU-per-pin Wafer Level Reliability (WLR) testing, high speed parallel test, die sort, and Process Control Monitoring (PCM)

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 2: Power semiconductor devices

PART 5: Power management

PART 3:

MEMS and **Semiconductor Sensors**

PART 6: Opto-electronics

Power semiconductor device:

- A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics; a switch-mode power supply is an example. Such a device is also called a power device or, when used in an integrated circuit, a power IC.
- Typical device : GTO / GTR / power MOSFET / IGBT

Characterization of power semiconductor device:

Characterization	Test Category	Devices and Parameters				
		IGBT	Power MOSFET	GTR		
Static	ON-state	V _{CE-} I _C V _{GE-} I _C	$\begin{array}{l} V_{\text{DS-}}I_{\text{D}} \\ \text{VTH} \\ V_{\text{GS-}}I_{\text{D}} \\ \text{R}_{\text{DS(on)}} \end{array}$	V _{CE-} I _C Gummel plot		
	OFF-state	I _{CEO} I _{CES} BV _{CES} BV _{CEO} BV _{CBS}	I _{GSS} I _{DSS} BV _{DSS} BV _{DG}	I _{CEO} I _{CES} BV _{CES} BV _{CEO}		
Dynamic	Charge	Q _G	Q _G	NA		
	Capacitance	C _{iss} (a.k.a. C _{ies}) C _{oss} (a.k.a. C _{oes}) C _{rss} (a.k.a. C _{res})	C _{iss} (a.k.a. C _{ies}) C _{oss} (a.k.a. C _{oes}) C _{rss} (a.k.a. C _{res})			
Switching	Timing	T _{d(on)} T _r T _{d(off)} T _f	T _{d(on)} T _r T _{d(off)} T _f	T _s T _f		

Static Characterization directly descripts DC performance and the quality of the devices, and the test is easy to perform.

Keithley Power Semi Test Solutions MEET A WIDE RANGE OF CURRENT-VOLTAGE TESTING NEEDS

Up to 100A pulse for ON-State tests

Up to 3kV for OFF-State tests

Up to 10kV for breakdown voltage testing

Complete solution for ON-State, Off-State and C-V tests

NEW!! Up to 7A DC, 10A pulse for interactive ON-State testing

Keithley Power Semi Test Solutions

CONFIGURABLE SOLUTIONS

Single- or Dual-Channel SMU Instruments

COMPLETE SOLUTIONS

Parametric Curve Tracers

Options available:

- <u>Software</u>: ACS Basic Edition with built-in test libraries and real-time and parametric test modes
- <u>Accessories</u>: Test fixtures, protection modules, high voltage triaxial cables

A complete bench top system that includes a variety of SMU instruments, cables, test fixtures, and software for characterizing power devices

Power Semi Test Accessories

SUPPORT A VARIETY OF MEASUREMENT TYPES AND SIMPLIFY SYSTEM INTEGRATION

Specialized Cabling

High Power Test Fixtures

High Voltage Bias Tee kits

Overvoltage Protection Modules

Power Semi Test Software

ACS BASIC, ACS

- ACS Software is the "glue" that brings all of the instruments together to make a solution
 - Supports Series 2400, 2600, and 4200 SMUs
- Includes hundreds of built-in device test libraries

Source Measure Units Are Used in Many Places

For designers/researchers of lighting, power management, power conversion & control circuits and related devices

- Power transistor forward characteristics
- Battery Load Curves
- Charger simulation
- Dynamic load simulation
- 7A DC, 10A pulsed
- 2460/2461 SMU

Model 2461 SourceMeter SMU

KEITHLEY CONTINUES TO INVEST IN ITS LINE OF GRAPHICAL SOURCE MEASURE UNITS

10A @ 100V 1000W Pulse version of the Model 2460

- 1000W Pulse Source/Sink, 100W DC Source/Sink
- Pulses as fast as 150µS. Dedicated pulse screen and commands
- Dual 18-Bit 1MS/s Digitizers for simultaneous I&V. Store up to 5 million rdgs.

Contact Check

 Succeeds the Model 2430, 2420-C, 2425-C, 2430-C, 2440-C SourceMeter SMUs.
 Opportunity to upsell to the 2461.

IVy Android/iOS App – Visualize, Interact, Share For Series 2600B SourceMeter SMU Instruments

Visualize Instant Responses

Swipe to change the source value and instantly see your device's response

Interact for Better Understanding

Pinch and zoom to gain deeper insight into your device's performance
 Share Your Results

•Share screen shots and CSV files instantly using built-in Android tools

IVy Application Examples

DUT comparison

Diode Reverse Bias

LED Vf vs. Time

MOSFET Family of Curves

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 3: MEMS and Semiconductor Sensors

PART 6: Opto-electronics

MEMS Background

MEMS (Micro-electro-mechanical Systems)

MEMS (Micro-electromechanical Systems) Keithley Solution for MEMS device test

- Customer application:
 - Test with sensor structure for its intrinsic characteristic without stress (pressure, vibration etc.)
 - To verify if fabricating process are within control.
 - Micro-phone:

Voice \rightarrow airflow \rightarrow Capacitance change in MEMS sensor \rightarrow electrical signal ---C test

• Pressure sensor:

Pressure \rightarrow R change in MEMS sensor \rightarrow electrical signal ---R test

- Test requirement:
 - I-V:
 - R test: Force V measure I
 - V<10V
 - R~KΩ
 - C-V:
 - Capacitance test
 - f=100KHz DCV<30V
 - C~10pF (0.1pF accu.)
 - wafer level with auto-prober

Customer Design

Product

Micro-phone

Keithley Test Solution:

KEITHLEY

Ethernet Hub

4210-CVU

4200-SCS/C- x 1ea Include 2*4200-SMU

> 707B x 1ea 7174A x 1ea

- Configuration: •
 - 4200-SCS/C x 1ea 4210-CVU*1

Ethernet

- 4200-SMU*2 0
- 4200-PA*1 0

- 707B x 1ea 7174A x 1ea

Prober station

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 3: MEMS and **Semiconductor Sensors**

PART 6: Opto-electronics

New Flash Memory, bigger and faster.

3D Nand Flash tech. makes the massive data store more easier and faster.

From How Samsung connects to the wordlines in the array (courtesy Techinsights)

Non-volatile Memory Product Solutions

0/20/2011 14:09 4

1.05-9

800.0E-12

600.0E-12

200.0E-12 0.0E+0 -200.0E-12 -400.0E-12

-600.0E-1

800.0E-12

0.05.6

60.0E-6

00.0E.

Graph2 Settings

FeRAM

Graph Settings ...

Definition Sheet Graph Status Test Not

Configuration of Solution2 for 3D Nand Flash reliability test in one of our customer.

2

Example of Flash Memory Cell Test Setup

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 5: Power management

PART 3:

MEMS and Semiconductor Sensors

PART 6: Optical energy and device

More power and wisely use them

- Increase the Capacity of battery
 - Ultra capacitor: Need of Public transportation
 - Electrochemistry research for new battery
- Decrease the power consumption.
 - More accurate Power measurement for different mode.

"The limitation to the number of sensors and amount of generated data is the battery life of the Wearable." **Power Management**...is crucial in wearable technology because poor power management translates into battery drain...Battery life has a direct impact on a product's real usefulness... Characterizing a usage profile is a nontrivial design activity. Measure ment

Battery

capacity

Mitch Maiman, president and cofounder of Intelligent Product Solutions

Power

control

consumption

Credit Suisse

Using SMU for Ultra-capacitor test

- Test Instrument:
 - Keithley 2612/36B* for C<=20F
 - Keithley 2651A for C>=350F

• Connection:

2016/6/8

4-wires connection (remote sense)

- Test Sample:
 - KAMCAP 10F Urate=2.7V
 - Maxwell 350F/3000F Urate=2.7V

* The test instrument can be anyone of SMUs family as long as the current can fulfill the requirement.

Experiment – Result

for **10F** capacitor with **2636B**

- Test result:
 - 2 cycles are tested

Cch = I2 ×(t2 –t1) / (V2 – V1) =10.93 F

Cdch = I5 ×(t5 -t4) / (V5 – V4) =10.88 F

A Tektronix Company

Electrochemistry Applications

Basic Lab

Research

Electrode Development

Research

Organic Semi

Nanomaterials

Electrodeposition

Electrochemistry is the cornerstone for many new products such as: batteries, glucose sensors, solar cells, coatings, medical devices etc.

Involving Research, Design, Characterization, Performance Testing

Keithley's Electrochemistry test solution

- 2450-EC: 1A, 200V, 20W
 Potentiostat/Galvanostat
- 2460-EC: 7A, 100V, 100W
 Potentiostat/Galvanostat
- Includes:
 - Potentiostat (SMU)
 - Cable for 2,3 or 4 electrodes
 - Built-in software with test techniques
 - Full documentation

Keithley SMU for Electrochemistry Applications GROWING LIBRARY OF TECHNIQUES

- Cyclic Voltammetry
- Linear Sweep Voltammetry
- Open Circuit Potential
- Potential Pulse and Square Wave with Current Measure
- Current Pulse and Square Wave with Voltage Measure
- Chronoamperometry
- Chronopotentiometry

Distinctive differences

SIMPLICITY

Configure test, run experiment, generate voltammogram plot, analyze results

Solution for low power consumption measurement: DMM7510 + 2280S

Example Application

More Detailed Power Consumption Info with DMM7510

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 3:

MEMS and Semiconductor Sensors

PART 6: Opto-electronics

Optical energy: Solar cell

KEITHLEY A Tektronix Company

Solar cell test solution:

 Based on SMUs' powerful capability of I-V characterization, solar cell test engineers are able to test the cell or cells more efficiently along with ACS Basic solar cell suit.

A Tektronix Company

		Max.Cur.	Max.Volt.	Min.Cur/Volt.	Software		
SolarCell-24	2450	±1.05A DC	±210V	10fA/10nV			
01.00450 2.00000A	2460	±7A DC	±100V	10fA/10nV	ACS Basic	符号	参数名称
						lsc	短路电流
						Voc	开路电压
						Pmax	最大功率点
SolarCell-26	2601B	±3A DC/	±40V	100fA/100nV	ACS Basic	Imax	最大功率点处的电流
		IIOA PUISe				Vmax	最大功率点处的电压
	2611B	±1.5A DC/	+200V	100fA/100nV		FF	填充因子
		±10A Pulse				η	转换效率
	2635B	±1.5A DC/	±200V	10fA/10nV		Rsh	并联电阻
		±10A Pulse				Rs	串联电阻
	2651A	±20A DC/				太阳能电	且池测试参数
		±50A Pulse	±40V	0.1fA/100nV			

X

Standard Solar cell characterization test can be done in ONE MINUTE! KEITHI

Optical Module Components in Optical Communication

- Optical communication (a.k.a. optical telecommunication) is communication at a distance using light to carry information.
- Electrical signal (message) → optical signal
 → Electrical signal (information)
- "sender" and "receiver"
 - Laser diode
 - Photo detector

Keithley solution for Optical Module Components test

 Final DC test, Process control DC test, Coc parallel test, FA test for TOSA/ROSA, Tuneable, Coherent etc., telecom, Datacom products

- 26** SMU:
 - 4-quadrant voltage/current source and measure instruments
 - 10A pulse to 0.1fA and 200V to 100nV
 - TSP (Test Script Processing) technology

- 6485/6487 Picoammeter/Source
 - •10fA (10x10-15A) sensitivity
 - •<200µV voltage burden
 - •Bipolar 500V floating source
 - •Displays resistance

PART 1: New Material and Nano-technology

PART 4: Signal, Data storage/sorting

PART 3: MEMS and **Semiconductor Sensors**

PART 5:

Power management

PART 6: Opto-electronics

Researchers use Our Sensitive Instruments to Make Great Scientific Discoveries

Dr. Klaus von Klitzing 1985 Nobel Prize in Physics Quantized Hall effect

Dr. K. Alexander Muller and
Dr. J. Georg Bednorz
1987 Nobel Prize in Physics
Superconductivity in ceramic materials

Dr. Konstantin Novoselov 2010 Nobel Prize in Physics Graphene (two dimensional material)

And They Need All Our of Equipment

Typical University/ Research Lab

- SourceMeters /
- Scopes
- Power Supplies
- DMMs
- Other Equipment

2014 Physics Nobel Laureate for the development of the Blue LED

Shuji Nakamura) and his research group at UCSB.

Credit: UC Santa Barbara

Team that invented Violet Nonpolar Vertical-Cavity Laser Technology

Need More Sensitivity: The Most World's Most Sensitive Meter

Sensitivity:

Note: Q of $1e^{-19} C$ 1A = 6.2 x 10¹⁸ electron/second

Our Key Advantage:

The world's most sensitive current measurement instrument

Today, we commit to this next great leap into the cosmos. Because we are human. And our nature is to fly.

Tektronix®