Tektronix

车载以太网的挑战及 泰克测试解决方案

Ocean Yu

Automotive Trends

С

Ε

S

Â

÷

Autonomy requires the use of better sensors

Connectivity enables new forms of vehicle communication

Electrification requires new powertrain technologies

Shared mobility creates new standards and testing

IC End-Use Markets (\$B) and Growth Rates

*Covers only the Internet connection portion of systems. Source: IC Insights

Automotive Micro Drivers

Safety

- Airbags, TPMS, backup camera
- NHTSA sets initiatives (\$4B over 19 years) to accelerate ADAS

Fuel economy and emission

- Japan sets light commercial vehicle fuel standard to increase fuel economy by **26%**
- U.S. sets 45 50% reduction in CO2 emissions per mile by 2025

Social & customer needs

- Connected car
- UBER, ZIP CAR, BMW Drivenow

Automotive Focus Areas

In-Vehicle Networking

Vehicle Sensors

Powertrain & Electrification

Automotive Focus Areas

What is IVN?

- Electronics inside the car communicate with each other over In-Vehicle-Network.
- IVN wiring is the 3rd largest contributors of overall weight of car and 2nd largest contributors of overall BOM
- IVN requirement:
 - Reliable data transfer at Automotive harsh environment
 - EMI/EMC
 - Low weight, low cost, low power

K

Autonomous Car Block Diagram

DOMAIN CONTROLLER

In-Vehicle Network

NETWORKS ON WHEELS

- Ecus communicate with each other over invehicle network (*IVN*)
- On average there are 30-40 ecus in luxury car
- Each ECU have at least one IVN node
- Requirements
 - Low cost, low weight, low power
 - Reliable
 - Withstand harsh environment
 - High speed, low latency

60.0

IVN Datarate

In-Vehicle Network standards

Automotive Electronics Application Technologies

DATARATE	SAFETY	INFOTAINMENT- TELEMATICS	POWERTRAIN	BODY ELECTRONICS
Sensor 25-400kbps	DSI3 (airbag) PSI5 (airbag)		SENT	
Low speed Control 20kbps	LIN, CXPI			LIN, CXPI
Multi-master Control	CAN, CAN-FD, 10BASE- T1S	CAN, CAN-FD, 10BASE-T1S	CAN, CAN-FD	CAN, CAN-FD
Safety Critical	FlexRay/10BASE-T1S		FlexRay/10BASE-T1S	
Connectivity 100M-1G	100/1000BASE-T1	100/1000BASE-T1, Apix, GVIF, GMSL	100/1000BASE-T1	
High Speed Sensor 1G-3G	FPD-Link, LVDS, NGBASE-T1, A-PHY, 25G Automotive Ethernet	HDBase-T, A-PHY, LVDS		

IVN Serial Standards

Trends

- Standardization
- Modulated signals (PAM3 / PAM4 / PAM16)
- Power over Dataline (PoDL)
- Symmetric and Asymmetric communication

Dr. Kenter Matheue, BRIW AG, Automative Ethernet Googress 2018

Standards

- 100/1000BASE-T1 (IEEE 100/1000Mbps)
- 10BASE-T1S (IEEE 10Mbps)
- 2.5G/5G/10GBASE-T1 (IEEE 2.5/5/10Gbps)
- A-PHY (MIPI 12Gbps)
- HDBASE-T (1-6Gbps)
- Auto-Serdes (13Gbps PAM4)
- Optical Automotive Ethernet

Automotive Ethernet IEEE Standards

FROM DATACENTER TO PASSENGER CAR

802.3cg

10BASE-T1, 10Mbps, (**S-15m, L- up to 1km**)

802.3bw 100BASE-T1, 100Mbps, PAM3 Modulation (15m)

802.3bp 1000BASE-T1, 1Gbps, PAM3 Modulation (15m)

802.3ch 10GBASE-T1, 2.5/5/10Gbps

Ethernet adoption forecast

Why Automotive Ethernet?

- Enables support for high data rate applications (ADAS, IVI)
 - Low latency for ADAS (<250us)
- Well-proven technology, customized for automotive needs
- Co-exists with lower speed buses (CAN-FD, LIN, etc.)
- Unshielded single twisted pair cabling designed for automotive environment and lower cost
- Can reuse existing application layer ethernet stack
- Uses PAM3 signaling to meet EMI/EMC requirement

Tektronix standards Participation

- Partha:
 - Chairperson, MIPI Test working group 0
 - IEEE member Multigigabit Ethernet
 - Open Alliance participants
- Ramesh:
 - IEEE member Multigigabit Ethernet
 - HDBaseT contributor
- Pavel:
 - IEEE member Optical Ethernet and 400G Ethernet

Automotive Ethernet Compliance Ensuring Performance And Interoperability

Ethernet: TC8 & Its Test Requirements

Automotive Ethernet Test Requirement

Multiple testing needs including physical layer (PMA) transceiver, receiver, communication channel, and EMC

- PHY Media Attachment Test suit
- EMC test for common mode chock
- Interop test
- PHY control test
- Physical coding sublayer test
- Communication channel test
- Open sleep / wakeup test
- EMC test for trans receiver
- EMC spec for ESD suppression devices

Automotive Ethernet PMA Compliance

- PHY media attachment compliance test
- PHY test mode configuration should be provided by PHY vendor
- Transceiver PHY electrical test requirements include:
 - Maximum output droop
 - Timing jitter (master / slave)
 - MDI output jitter
 - Distortion
 - Power spectral density
 - Clock frequency
 - MDI return loss
 - Peak differential output
- PAM3 signaling

Group 1: Electrical Measurements	
Maximum Transmitter Output Droop	Test 5.1.1
Transmitter Distortion	Test 5.1.2
Transmitter Timing Jitter (MASTER, SLAVE)	Test 5.1.3
Transmitter Power Spectral Density	Test 5.1.4
Transmit Clock Frequency	Test 5.1.5
MDI Return Loss	Test 5.1.6
MDI Mode Conversion Loss	Test 5.1.7
Transmitter Peak Differential Output	Test 5.1.8

1000BASET1 Measurement	Spec ID
Tx Droop Measurement	5.3.1
Tx Distortion Measurement	5.3.2
Tx_TCLK125 Jitter	5.3.3
Tx_TCLK125 Jitter	5.3.3
MDI_output_Jitter	5.3.3
Tx PSD	5.3.4
Tx Peak Diff output	5.3.5
Tx Clock Frequency	5.3.6
MDI Return Loss (S11)	7.2.1
MDI Mode Conversion loss	7.2.2

Automated Compliance

Test Selection

Automated Report Generation

1000000		DUTOOI	7.15	a Automotive Tale	101147	
C C AL		001001	TekExpre	ss Automotive-Ethernet	10.1.1.47	
Suite Name		TUUUBase-TT	/Base=11 Framework		4.3.0.40_KeV_A	•
Date /Time		2018-02-08 19:52:52	FirmWare	Scope Model		,
Pre-Recorded Mode		True	1 1111 11 11	rimiware version		
Ove rall Execution Tim	e	0:00:04				
Ove rall Analysis Time		0:00:02				
Overall Test Result		Pass				
DUT COMMENT:	General Comme	nt - Automotive Etherne	et DUT			
Positive Output Droo P	-16.7068	96	Pass	26.7068	A.A	10.0000
op	-16.5236	96	Pass	26.5236 1	A. I	10.0000
COMMENTS	Numbe	r of Positive Droops:98, I	Number of Negative Droo	ps:99		
	•					Back to Summan
Transmitter Output Dr	roop					
Positive Droop						
		Tr	anomittor Output Droo	p(Positiva)		
10				p(rositive)		
1-2-					v1 : -1.83 rea	
		and a second second	- marine	ويستحدد وينجى	x2 : -1.830se	an an
960m						
960m		N	N	N	∆x:0sed	

Report with pass/fail, margin and plots

MDI Return Loss, Distortion Test

Return loss measurement

- Test spec references VNA or Scope + AWG as measurement tool
- Return loss measured at the MDI shall be at least 18 dB (*1 to 20 MHz*), and at least 18-10*log10(*f*/20) dB (*20 to 66 MHz*)
- Max & min mask defines limits at 4 specific frequencies
- Tek has patented approach using scope and AWG (same equipment used for other tests)

Distortion test

 Tektronix 100BASE-T1 offers software clock recovery, no need of clock connection or clock divider unit

Signal Access

MSO6/MSO5 Scope

Clock Divider

Beyond Compliance System Level troubleshooting

Automotive Ethernet Test Requirement

CAN TO AUTOMOTIVE ETHERNET

Automotive Ethernet Standard

- IEEE Ethernet derivative standard (BroadR-Reach) created by an industry alliance (OABR)
- IEEE has established its own standards 100BASE-T1 (P802.3bw[™]) and 1000BASE-T1 (802.3bp[™])
- Initial deployment focused on 100 Mb/s and 1 Gb/s, early development underway for 10Gbps
- Unshielded single twisted pair cabling designed for automotive use and lower cost
- PAM3 Modulation: Slow rise time, reduces EMI
- Full-Duplex Communication: Reduces cable and increases effective bandwidth

What is "PAM" Signaling?

- PAM = Pulse Amplitude Modulation
- Combines train of pulses with a modulating signal → amplitude modulated pulses
- Embeds more information than 01010101 pulses – information encoded into the *amplitude* of the pulse, not just on/off

• PAM3 \rightarrow three levels

Challenges at the System Level

- Reduce Intrusion: System level testing demands minimal intrusion with the System Under Test.
- Full Duplex Signals: signals overlay, meaning that connecting high impedance voltage probes yields no useful information.

Current solution

- Directional coupler-
 - Cut the cable and disturb the system
 - Directional coupler works on Directivity principle, would not show true Signal for Signal Integrity test
 - Insertion loss, Reflection, Mode conversion loss
 - Propagation delay
 - De-Embedding the signal will degrade Signal to noise ration

Better Signal Separation

- Tektronix unique (Patent pending) Automotive Ethernet Signal separation solution using Voltage and Current waveform
- Proprietary method to separate Full-duple signal using Current waveform and Full-Duplex Voltage waveform
- Direct access Probing, no need to break cable, No loading on ECU system
- Provides Master and Slave separated sic

Tektronix Signal Separation Solution

PAM3 Analysis

- Software clock recovery
- PAM3 Eye Height and Width
- PAM3 Linearity
- Jitter Separation
- Bathtub curve (BER)
- Eye Mask test

Signal Separation solution

Protocol Decode Table

File	Edit Applic	ations Utility H	elp				Diagram	Tektro
Bus Deco	ide Results				×	Plot 1 - Eye Dagram(Meas 1)	Diagram	Add Net
kus I (Au	to Ethernet)	2 (Auto Ethernet)						Cursors
	7.444968mc	EDIEAE3REEA.)	0067550556	Mg Protacil Cellipter 29	ting transmitte			Measure
	1111100010	1 S TIPE SID LPN	DOUTE JUDIE OF					TRACING 1
	-7.256174ms	F01FAF38FEA2	006765506765	-	÷.			Table
	-6.363022ms	P01FAF38FEA2	D067E5506P6E	-	-			Meast
	-# 174448mm	FOIFAF3RFFA3	006255506268	- 2	2			Eye Height #10.000 V
		(CENTER ETC.						
	-5.757098ms	F01FAF38FEA2	D067E5506F6E	÷.	-			
	1 528228ms	FD15AF38FEA2	D06765506F68	+	+			
	+1 370784ms	F01FAF38FEA2	D067E5506F6E	-				
						The Alter		
	-1.220151ms	F01FAF38FEA2	D067E5506F6E	2	77	Deduced Account 1954		
	-1 075097ms	ROTEAPTREFAT	100626550686	12	122	_US_999804/999804_10031_999804/999804	-11	1.
Aurumnta	Course State 150.0	o mildin i i i i i i i i i i i i i i i i i i	III OO BA JIYAMI) - MARTINE Ziyam		***			
E.	Aw	MAN	- LAAR	Y MAN	had	v transford and the		
27	M			hard		MAAA	996,29 m	
\$\A	AMAAAN	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MAMMAN	AAAAAAAAAA	AWAAW	AANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ANNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
A	WAAAAAA	ANNAAAAA	AAAAAAAAA	MANNAN AA	AAAAAA	ANANANAAANAAANAAANAAAAAA	ANA VAAAAAAAAAAAAAAA	
2.4442	MAC D	estination Addr	ress:F01FAF38FEA	2h MA(C Source A	ddress:D067E5506F6Eh		[iq]
17.385 25.M5A Asster_N	- 249.07 m	284.86 m. 298.885 525.MSA 625.MSA Master_N_ Master_F	Bus I IIIe J Auto Ether, Auto Ether,	1 2 3	4 5	6 7 8 Add Add New Ork Dubl AFG Structure 1 New New Dubl New Dubl AFG Structure 1 Nath Ref Duble Duble Structure 1	Ins Acquisition Ins V Manual, Simple 32 DN Simple 0/1	Aculy2# 01 05 01 12:1

Evo

Protocol Decode

T

Advantage of Tek solution

See the signal you could never see before

	Tek Solution	Other solution			
Test setup	Voltage probe and current probe, Non- Intrusive method	Directional coupler, Automotive Ethernet to SMA convertor			
Signal Integrity	Signal Separation PAM3 Analysis	Directional Coupler			
	Vpk-pk: ~2V	Vpk-pk: ~200mv, de-embedding would deteriorate signal to noise ration			
Propagation delay	No delay	Varies with different Directional coupler			
Advantage	True signal, easy to setup, accurate signal integrity, no need to de-embed	Difficult to use, impacts ECU performance, adds Insertion loss and MDI mode conversion loss			

Automotive Ethernet Testing Solutions

Testing an automotive Ethernet often requires an oscilloscope, appropriate probes, a signal source, software and test fixtures. To meet your needs, Tektronix offers a full line of test solutions for Signal Quality and Compliance.

Automotive Ethernet Test	Oscilloscope	Software	Probes	Signal Source	Fixture
Signal Quality Testing (Signal Separation, Protocol Decode, Signal Quality & Debug)	5 Series MSO (Windows only) 6 Series MSO (Windows only)	Option 5/6 -AUTOEN-SS: Signal Separation Option 5/6 -PAM3 (Automotive Ethernet Signal Analysis) Option 5/6 -SRAUTOEN1 (100BASE-T1 Protocol decode) Opt. 5/6 -DJA (Jitter Analysis)	TDP1500 TCP0030A / P6022		ECU Dependent Contact Tektronix for information
Open Alliance TC8 PMA-Tx Compliance Testing	5 Series MSO (Windows only) 6 Series MSO (Windows only) DPO70000C MSO / DPO70000	Opt. 5/6 -CMAUTOEN (1000BASE- T1/100BASE-T1 Compliance) Opt. 5/6 -DJA (Jitter Analysis) Opt. BRR (1000BASE-T1/100BASE- T1 Compliance) Opt. DJA (Jitter Analysis)	TDP1500 TDP3500	AWG5200 (RL & Distortion) AFG3152C (Distortion only)	TF-XGbT TF-BRR-CFD Contact Tektronix for information

Automotive Ethernet L1-L7

Automotive Reference

- Automotive website: <u>www.tek.com/automotive</u>
- Automotive Ethernet: <u>www.tek.com/automotive/automotive-ethernet</u>
- Automotive Power: <u>www.tek.com/power-efficiency/market-your-power-</u> <u>conversion-designs</u>
- EMI/EMC: <u>www.tek.com/application/electromagnetic-interference-emi-and-electromagnetic-compatibility-emc</u>

Signal Separation & PAM3 Demo

THANK YOU

