Tektronix

功率IGBT器件测试系统及自动化简介

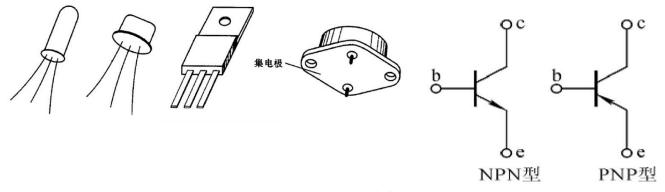
林彩霞

31 JULY 2020

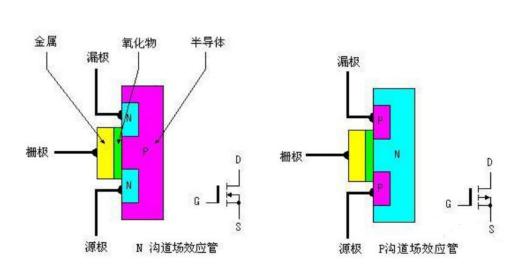
Agenda

·功率IGBT器件的研究与应用前景

- IGBT器件介绍
- IGBT的IV和CV性能
- IGBT的应用


·功率IGBT的解决方案

- PCT介绍
- 封装器件和晶圆级产品的配置
- PCT软件介绍

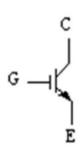


IGBT(绝缘栅双极型晶体管)

- BJT(Bipolar Junction Transistor)双极型晶体管。
- 优点: 耐压高、电流大、开关特性好;
- 缺点: 驱动功率大、驱动电路复杂、开关速度慢。

- MOSFET绝缘栅型场效应管。
- 优点: 驱动电路简单, 驱动功率小, 开关速度快, 工作频率高;
- 缺点: 电路容量小、耐压低。

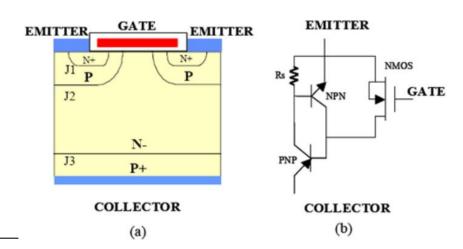
部分内容来自百度网、电子网或康华光版模电课本



IGBT(绝缘栅双极型晶体管)

- IGBT(Insulated Gate Bipolar Transistor), 绝缘栅双极型晶体管,是由BJT和MOSFET组成的达林顿结构的复合器件。
- 其中MOSFET为驱动元件,其外部有三个电极,分别为G-栅极, C-集电极, E-发射极。
- 具有自关断的特征: IGBT是一个非通即断的电路开关,没有放大电压的功能,导通时可以看做导线,断开时看做开路,
- 融合了BJT和MOSFET的两种器件的优点,用电压控制,驱动功率小,饱和压降低,耐压高。
- 经过了六代发展,形成比较稳定的特性。

(1) 简化等效电路图


(2) 电气图形符号

部分内容来自百度网、电子网或康华光版模电课本

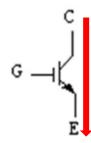
IGBT(绝缘栅双极型晶体管)

- 导通:在IGBT的栅极G和发射极E之间加上驱动正电压VGE(或大于开启电压),则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;
- 关断:若IGBT的栅极G和发射极E之间电压VGE=0V(或施加反压),则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

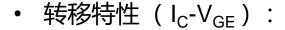
功率半导体器件的主要特性参数

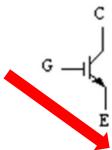
	T		Devices and Parame	ters
Characterization	Test Category	IGBT	Power MOSFET	GTR
Static	ON-state	V _{CE-} I _C V _{GE-} I _C	$V_{DS}I_{D}$ VTH $V_{GS}I_{D}$ $R_{DS(on)}$	V _{CE-} I _C Gummel plot
	OFF-state	I _{CEO} I _{CES} BV _{CES} BV _{CEO} BV _{CBS}	I _{GSS} I _{DSS} BV _{DSS} BV _{DG}	I _{CEO} I _{CES} BV _{CES} BV _{CEO}
Dynamic	Charge	Q_G	Q_{G}	
	Capacitance	C_{iss} (a.k.a. C_{ies}) C_{oss} (a.k.a. C_{oes}) C_{rss} (a.k.a. C_{res})	C_{iss} (a.k.a. C_{ies}) C_{oss} (a.k.a. C_{oes}) C_{rss} (a.k.a. C_{res})	NA
Switching	Timing	$T_{d(on)}$ T_r $T_{d(off)}$ T_f	$T_{d(on)}$ T_r $T_{d(off)}$ T_f	T _s T _f

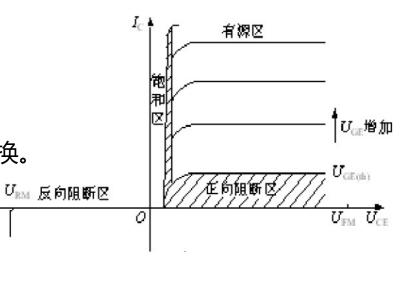
Q_G: (开通)总栅电荷。使IGBT从关断到饱和导通期间,将极间寄生电容充满电所需要的电荷总量。

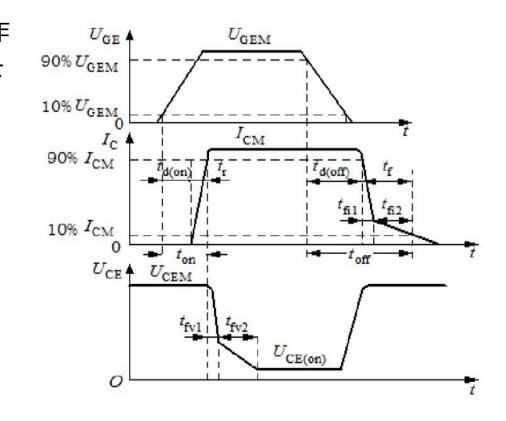

 Q_{GE} : (开启)栅一射电荷。GE电压从OV至IGBT开始导通 $(V_{GE}(th)$,阈值电压)所需要的电荷总量。此时,Cge已经基本被充满,Cgc则是刚刚开始充电。

 Q_{GC} : (开通)栅一集电荷。GE电压从 V_{GE} (th)升至IGBT饱和导通所需要的电荷总量。这一期间,栅极电流主要对Cgc充电, V_{GE} 电压基本保持不变。




IGBT静态特性


- 输出特性(I_c-V_{CE}):
 - ➤ 以栅极电压为参考时的I_C与集射电压U_{CE}关系
 - ➤ 正向阻断区、有源区和饱和区。在电力电子电路中, IGBT工作在开关状态,在正向阻断区和饱和区来回转换。



IGBT开关特性

- IGBT导通过程:
 - ▶ t_{d(on)}: 导通延迟时间,从U_{GE}上升至10%到I_C上升至10%时间;
 - ▶ t_r: 上升时间, I_c从10%到90%
 - ➤ 开通时间t_{on}=t_{d(on)} +t_r
 - ➤ U_{CE}的下降过程分为t_{fv1}和t_{fv2}两段。t_{fv1}是IGBT中MOSFET单独工作的电压下降过程;t_{fv2}是MOSFET和PNP晶体管同时工作的电压下降过程。

• IGBT关断过程:

- ➤ T_{d(off)}: 关断延迟时间,从U_{GE}后沿下降至90%到I_C下降至90%;
- ▶ t_f: 下降时间, I_C从90%下降到10%
- ➤ 关断时间t_{off}=t_{d(off)}+t_f
- ▶ 下降过程分为t_{fi1}和t_{fi2}两段。t_{fi1}是IGBT中MOSFET的关断过程, I_C 下降较快; t_{fi2}是PNP晶体管的关断过程, I_C下降较慢。

举例: IGBT 典型特性参数

(ST:STGW15H120F2, Trench gate field-stop IGBT, 1200 V, 15 A high speed)

Electrical characteristics

T_J = 25 °C unless otherwise specified.

Table 4. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 2 mA	1200			v
		V _{GE} = 15 V, I _C = 15 A		2.1	2.6	
V _{CE(sat)}	Collector emitter enturation	V _{GE} = 15 V, I _C = 15 A T _J = 125 °C		2.4		v
	Total	V _{GE} = 15 V, I _C = 15 A T _J = 175 °C		2.5		
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 500 μA	5	6	7	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 1200 V			25	μА
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			± 250	nA

Table 5. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{les}	Input capacitance		-	1300	-	pF
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz,	-	105	-	pF
C _{res}	Reverse transfer capacitance	V _{GE} = 0	1	32	,	pF
Qg	Total gate charge		-	67	,	nC
Q _{ge}	Gate-emitter charge	V _{CC} = 960 V, I _C = 15 A, V _{GE} = 15 V, see <i>Figure</i> 23	-	8	-	nC
Qgc	Gate-collector charge		-	38	-	nC

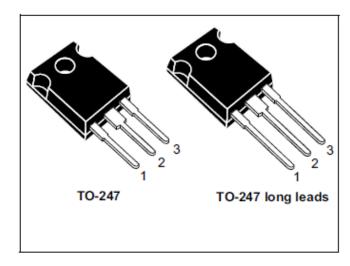
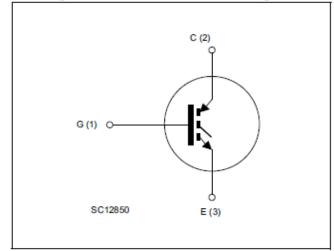
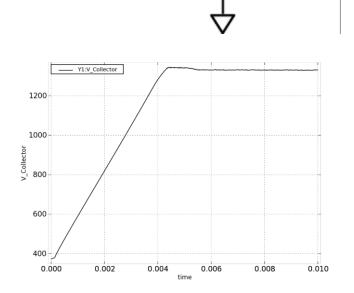



Figure 1. Internal schematic diagram

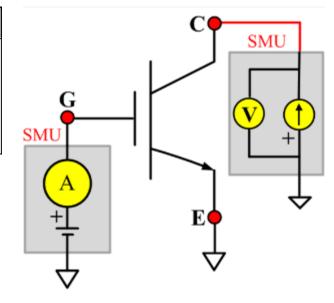

测试示例: V_{CES} (BV_{CES})

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 2 mA	1200			v

• 参数物理意义: 在不加栅压的情况下

(V_{GE}=0),看Collector 与 Emitter的击穿电压. 一般 以电流在某特定值下的Collector的电压记为V_{CES}

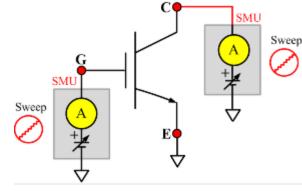
• 一般测试方法: 在Collector上加规定电流 (BiasI=2mA) Gate及Emitter 接common Lo. 测试Collector 端的电压


SMU

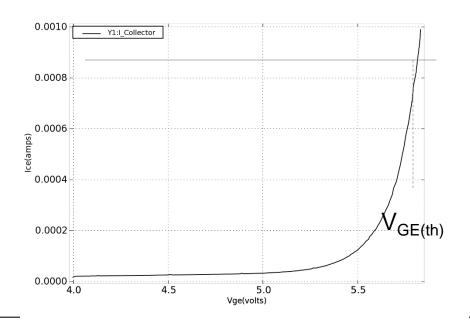
测试示例: V_{CE} (V_{CE(sat)})

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		V _{GE} = 15 V, I _C = 15 A		2.1	2.6	
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 15 A T _J = 125 °C		2.4		٧
		V _{GE} = 15 V, I _C = 15 A T _J = 175 °C		2.5		

- 参数物理意义: Collector 与 Emitter间的饱合电压。表征了在一定Gate电压下,流过额定电流时的Collector 电压值。
- 一般测试方法: 在Gate上加规定电压 (BiasV=15V) 在 Collector 端给所规定的电流 (BiasI=15A) Emitter 接common Lo. 测试 Collector 端的电压。


time	V_Gate	V_Collector	I_Collector
2.51e-4	1.499476e+1	2.249901	2.50026e+1

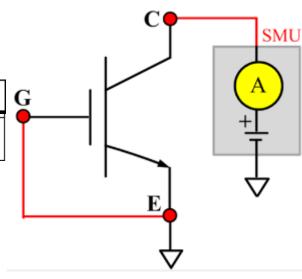
某次测试以IC = 20A测试的结果, 测试为单点测试,故只得到一个 V_{CE}为 2.2499V

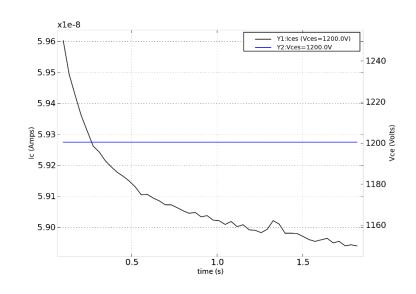


测试示例: V_{GE} (V_{GE(th)})

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 500 \mu A$	5	6	7	٧

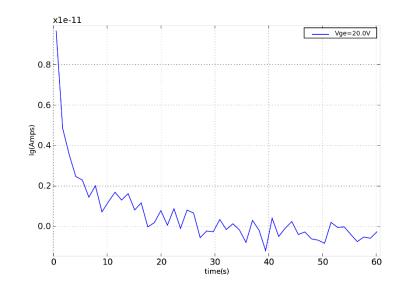
- 参数物理意义: Collector与Emitter间有微小电流开始通过时的 V_{GE} 值。用于作为衡量IGBT开始导通时的 V_{GE} 值的尺度。
- 一般测试方法: 在Gate及Collector上加同步的扫描电压 (SweepV 4~7V i.e.) Emitter 接common Lo. 测试Collector 端的电流。当其值等于额定值时的 V_G记为V_{GE(th)}




测试示例: I_{CES}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 1200 V			25	μА

• 一般测试方法: 在Collector上加额定固定电压 (BiasV = 1200V i.e.) 将Gate Emitter 接common Lo. 测试Collector 端的电流。



测试示例: I_{GES}

							SMU	
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		` / _
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			± 250	nA	A +1	1
		•	•				Ţ	

- 参数物理意义: C-E间处于短路状态时, 在G-E间外加指定的电压时G-E间的漏电流
- 一般测试方法: 在Gate上分别加正向及反向的电压 (BiasV=+/- 20V) Emitter 及 Collector接common Lo. 测试Gate 端的电流。

Symbol	Parameter	中文描述	对电源系统的影响
V _{DSS}	Drain to Source Voltage	漏源电压标称值	参考BV _{DSS}
	Continuous Drain Current (@:[=25°C)	10 10 10 10 11 11 11 11 11 11 11 11 11 1	漏源间可承受的电流值,该值如果偏小,在设
I _D	Continuous Drain Current (@:)=100°C)	漏源标称电流	计降额不充裕的系统中或在测试OCP、OLP的 过程中会引起电流击穿的风险。
I _{DM}	Drain current pulsed	漏源最大单脉冲电流	反应的是MOSFET漏源极可承受的单次脉冲电 流强度,该参数过小,电源系统在做OCP或O LP测试时,有电流击穿的风险。
V _{GS}	Gate to Source Voltage	栅漏电压	栅极可承受的最大电压范围。在任何条件下, 必须保证其接入的电压必须在规格范围内。M OSFET的栅极也是MOSFET最薄弱的地方。
E _{AS}	Single pulsed Avalanche Energy	单脉冲雪崩能量	MOSFET漏源极可承受的最大单次或多次脉冲
E _{AR}	Repetitive Avalanche Energy	重复雪崩能量	能量,该能量如果过小在做OCP、OLP、SURGER、耐压等测试项目时有失效的风险。
dv/dt	Peak diode Recovery dv/dt	漏源寄生二极管恢复电 压上升速率	(1) dv/dt反应的是器件承受电压变化速率的能力,越大越好。 (2) 对系统来说,过高的dv/dt必然会带来高的电压尖峰,较差的EMI特性,不过该变化速率通过系统电路可以进行修正。
_	Total power dissipation(@T _c =25°C)		该值越大越好,由于该值的测试是模拟理想环
P₀	Derating Factor above 25C	最大耗散功率	境,所以测试出来值跟实际应用比起来差异特 别大,参考意义比较有限。
T _{STG} , T _J	Operating Junction Temperature & Storage Temperature	结温及贮存温度	该参数表明MOSFET的温度承受能力,越大越 好
T _L	Maximum Lead Temperature for solderin purpose, 1/8 from Case for 5 seconds.	g 最大引线焊接温度	该参数是针对插件类产品来说,该参数值越大 焊接时温度承受能力越好。

Symbol	Parameter	中文描述	应用系统关联参数解读
R _{thjc}	Thermal resistance, Junction to case	结到封装的热阻	·····································
R _{thcs}	Thermal resistance, Case to Sink		该 系列参数均表明在发热相同条件下器件散 热能力的强弱,热阻越小散热越快。
R _{this}	Thermal resistance, Junction to ambient	结到空气热阻	MIND OF BANKE OF

Symbol	Parameter	中文描述	应用系统关联参数解读
Is	Continuous source current	最大连续续流电流	漏源间可承受的最大持续电流,该值如果偏小,在设计降额不充裕的系统中或在测试OC P、OLP的过程中会引起电流击穿的风险。
I _{sm}	Pulsed source current	最大单脉冲续流电流	反应的是MOSFET漏源极可承受的单次脉冲 电流强度,该参数过小,电源系统在做OCP 或OLP测试时,有电流击穿的风险。
V _{SD}	Diode forward voltage drop.		该参数如果过大,在桥式或LLC系统中会导 致系统损耗过大,温升过高。
T _{rr}	Reverse recovery time	反向恢复时间	该参数如果过大,在桥式或LLC系统中会导 致系统损耗过大,温升过高。同时也加重了 电路直通的风险。
Q _{rr}	Reverse recovery Charge	反向恢复充电电量	该参数与充电时间成正比,一般越小越好。

Symbol	Parameter	中文描述	应用系统关联参数解读		
Off charac	Off characteristics				
BV _{DSS}	Drain to source breakdown voltage	漏源击穿电压	漏源极最大承受电压,该参数为正温度系数。 如果BV _{pss} 过小,应用到余量不足的系统板 中会引起MOSFET电压失效,从而引起大电 流环路里的电阻保险等相关器件的烧毁。		
ΔBV _{DSS} / ΔT _J		 漏源击穿电压的温度系 数	正温度系数,反应的是BVDSS温度稳定性, 其值越小,表明稳定性越好。		
I _{DSS}	Drain to source leakage current	漏源漏电流	正温度系数,I _{DSS} 越大,MOSFET关断时的 损耗越大,会导致相应的温升效应。		
	Gate to source leakage current, forward	栅极驱动漏电流	栅极漏电流,越小越好,对系统效率有较小 程度的影响。		
I _{GSS}	Gate to source leakage current, reverse	100 100 -90 -97 mm +13 /10			
On charact	On characteristics				
$V_{GS(TH)}$	Gate threshold voltage	开启电压	(1) V _{GS(TH)} 越高,MOSFET米勒平台也就越高,开启越慢,开关损耗越小,进而产生的温升也越小。 (2) 其直接反应MOSFET的开启电压,MOSFET实际工作时电压必须大于平台电压,如果栅极驱动电压长期工作在平台附近,会导致器件不能完全打开,内阻急剧上升,从而器件产生相应的热失效现象。		
R _{DS(ON)}	Drain to source on state resistance	导通电阻	同一规格的MOSEFET R _{DS(ON)} 越小越好,其 直接决定MOSFET的导通损耗,R _{DS(ON)} 决越 大,损耗越大,MOSFET温升也越高。在较 大功率电源中,R _{DS(ON)} 损耗占MOSFET整个 损耗中较大比例。 R _{DS(ON)} 的变化会引起客户系统板OCP过流保 护点的变化。		
Gfs	Forward Transconductance	正向跨导	其反应的是栅电压对漏源电流控制的能力, Gfs过小会导致MOSFET关断速度降低,关 断能力减弱,Gfs过大,会导致关断过快, EMI特性差,同时伴随关断时漏源会产生更 大的关断电压尖峰。		



Dynamic characteristics				
C _{iss}	Input capacitance	输入电容=Cgs+Cgd	该参数影响到MOSFET的开关时间,C _{iss} 越大,同样驱动能力下,开通及关断时间就越慢,开关损耗也就越大,这也是在电源电路中要加加速电路的原因。但较慢的开关速度对应的会带来较好的EMI特性。	
C _{oss}	Output capacitance		这两项参数对MOSFET关断时间略有影响, 其中Cgd会影响到漏极有异常高电压时,传	
C _{rss}	Reverse transfer capacitance	反向传输电容=Cgd	與中Cgd会影响到瀰板有开节高电压的,传 输到MOSFET栅极电压能量的大小,会对雷 击测试项目有一定影响。	
t _{d(on)}	Turn on delay time	漏源导通延迟时间		
tr	Rising time	漏源电流上升时间		
$t_{\text{d(off)}}$	Turn off delay time	1	这些参数都是与时间相互关联的参数。开关	
t _f	Fall time		速度越快对应的优点是开关损耗越小,效率高,温升低,对应的缺点是EMI特性差, MOSFET关断尖峰过高。	
Q_g	Total gate charge	1		
Q _{gs}	Gate-source charge	栅源充电电量		
Q_{gd}	Gate-drain charge	栅漏充电电量		

测试示例: 动态特性 – 电容测试

- 结电容:包括引线电极与管芯之间的电容、管芯各组成部分之间、管芯与封装之间的分布电容,影响电路稳定性。 往往会引起高频自激振荡,消耗驱动功率,频率越高,消耗越大。
- 因为结电容由材料和结构决定的,不能全面反映对电路实际影响。在实践中通过三个变量:分布电容(几乎不受温度的影响)。
- Cgd在BJT中也称为米勒电容(Cbc),对FET而言也同样,功能等同。
- Ciss会消耗驱动功率,频率越高,消耗越大,高频应用时,栅极驱动信号需要对Ciss充电和放电,影响开关速度。
- Crss引起正反馈,即信号会从漏极倒灌回到栅极,引起自激振荡。

IGBT的应用

- 1.强电: 电压几十到几百伏量级、电流几十到几百安量级。
- 2.变换器:通过计算机控制IGBT,把电源侧的交流电变成给定电压的直流电,或是把各种电变成所需频率的交流电,给负载使用。还有:整流器、逆变器、开关电源、矩阵变化器。
- 3.传统产业领域:作为新型功率半导体器件的主流器件,IGBT已广泛应用于工业、4C(通信、计算机、消费电子、汽车电子)、航空航天、国防军工等传统产业领域。
- 4.能源应用:IGBT是变换与传输的核心器件,俗称电力电子装置的"CPU",应用于轨道交通、智能电网、航空航天、电动汽车与新能源装备等领域。

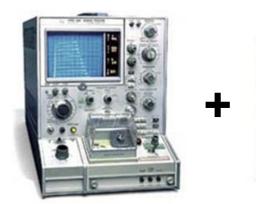
国内IGBT的主要厂商

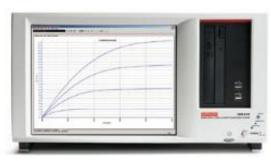
• 国外企业如英飞凌、ABB、三菱等厂商研发的IGBT器件产品规格涵盖电压600V-6500V, 电流2A-3600A。

● 国内IGBT主要厂商				
设计	制造	模组	IDM	
中科君芯	中芯国际	中车西安永电	中车株洲时代	
西安芯派	华润上华	西安爱帕克	深圳比亚迪	
无锡同方微	深圳方正微	江苏宏微	吉林华微	
宁波达新	上海先进	南京银茂	杭州士兰微	
山东科达	华虹宏力	深圳比亚迪	中环股份	

• 西门康、仙童等在1700V及以下电压等级的消费IGBT领域处于优势地位。

功率IGBT的测试解决方案


PCT


- PCT其概念
- PCT-CVU介绍
 - 。 高压电容测试 (HV CV)
- 8010和8020介绍
- PCT扩展至10kV高压的击穿电压和漏电流测试

PCT——Parametric Curve Tracer:参数化曲线记录仪

- 综合解决方案:包括仪器、线缆、测试夹具或接口转换面板、软件和测试库
- 电压值:从uV到3KV,电流值:从fA到100A
- 高压CV测试可选
- 曲线跟踪和参数分析

典型的器件参数

晶体管&整流器

正向电压(Vf) 反向电压(Vr) 反向漏电(Ir)

MOSFET & JFET

输出特性 (Vds-Id) 转移特性 (Vgs-Id) 导通电阻 (Rdson) 击穿电压 (BVdss, BVdg) 漏电 (Idss, Igss)

双极性晶体管& IGBT

饱和电压(Vcesat) 输出特性(Vce-Ic) 击穿电压 (Vceo, Vebo, Vcbo) 漏电流 (Iceo, Ices, Iebo)

•••••

三端双向交流开关& 可控硅

闭锁电压(Vdrm, Vrrm) 漏电流 (Idrm, Irrm) 吸池(保持)电流 (I_H) 闭锁电流(I_I)

PCT 配置

Model		Collector/Drain Supply		Step Generator	
		High Voltage Mode	High Current Mode	Base/Gate supply	Auxiliary Supply
Low Power	2600-PCT- 1B	200V/10A	200V/10A	200V/10A	N/A
High Current	2600-PCT- 2B	200V/10A	40V/50A	200V/10A	200V/10A
High Voltage	2600-PCT- 3B	3KV/120mA	200V/10A	200V/10A	200V/10A
High Current and High Voltage	2600-PCT- 4B	3KV/120mA	40V/50A	200V/10A	200V/10A

附件:

- Model 8010 高功率测试夹具
- Model 8020 高功率接口面板
- Model 2651A 50A 源表
- Model PCT-CVU 多频率C-V测试仪
- Model CVU-3K-KIT 3KV 偏置网络
- Model CVU-200-KIT 200V 偏置网络

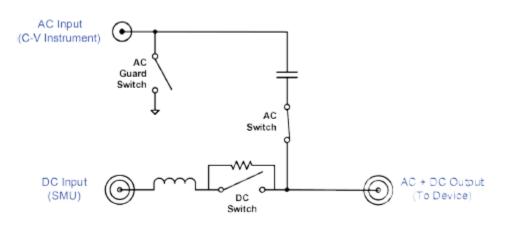
支持封装和晶圆级产品测试

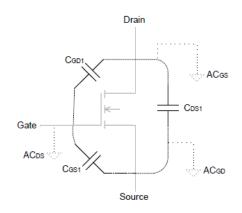
PCT CONFIGURATION Model 2600-PCT-4 8010 High Power Device Test Fixture RESULTS!

WAFER LEVEL CHARACTERIZATION

用同一套测试系统既支持封装级又支持晶圆级产品测试

PACKAGED PARTS CHARACTERIZATION




PCT 配置

- 对于 C-V测试, 配置PCT-CVU 和 bias tee
 - 。 8010的Bias Tee:
 - CVU-3K-KIT: 3kV HVCV 测量
 - CVU-200-KIT: 400V 差分 HVCV 测量
 - 包含 bias tees, 内置IV-CV开关

- 8020的Bias Tee:
 - 8020-Bias-Tee/CV-Installed: 3kV HV CV 测量
 - 包含 bias tees, 内置IV-CV开关

Model 8010测试夹具——封装器件的解决方案

Item	Description
CA-558-2	Interlock Cable (2m)
8010-DTB	Device Test Board for TO-247 packages
CA-562-2B	High current Red banana jumper cables
CA-562-0B	High current Black banana jumper cables
CA-560-2A	Red banana jumper cables
CA-560-0B	Black banana jumper cables
CA-563	BNC to single banana jumper cables
8010 has other options for supporting a variety of device packages, including the Model 8010-DTB-220 Device Test Board for TO-220 packages, Model 8010-DTB-CT Curve Tracer Adapter module and the Model 8010-CTB Custom Test Board	
	CA-558-2 8010-DTB CA-562-2B CA-562-0B CA-560-2A CA-560-0B CA-563 8010 has oth packages, in Board for TO Tracer Adapt

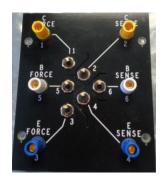
Model 8010测试夹具

连接一台Model 2657A, 执 行3kV和低电流(pA)测试 接入端口,传送外部仪器 (示波器探头,热电偶)信号

并连两台Model 2651A, 执行100A脉冲式测试

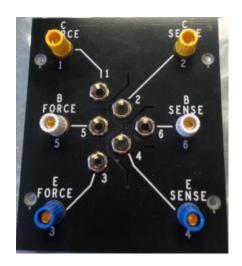
连接最多两台Model 2636B或Model 4200 SMU, 执行200V和低电流(pA)测试 连接SMU互锁。在打开测试夹具时 禁用SMU的高压输出

Socket


KEITHLEY

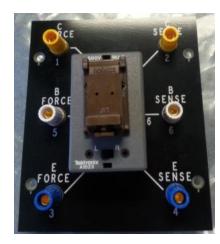
8010-DTB Supports TO-247 and axial leaded devices

8010-CTB customize with their own test socket



8010-DTB-CTTEK Curve Tracer Adapter
Socket

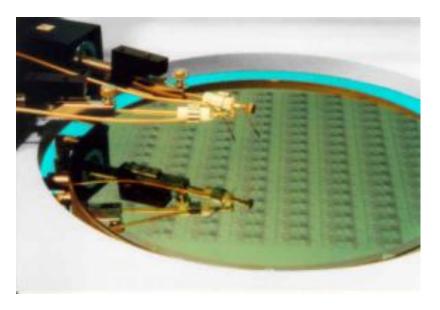
8010-DTB-220 Supports TO-220,TO-247 and axial leaded devices


Model 8010-DTB-CT Tektronix Curve Tracer Adapter Module

Model 8010-DTB-CT

Typical Tek module that will fit into our Adapter

Our Adapter with a different Tek module or socket plugged in


8010 适用于目前所有的曲线跟踪测试模块

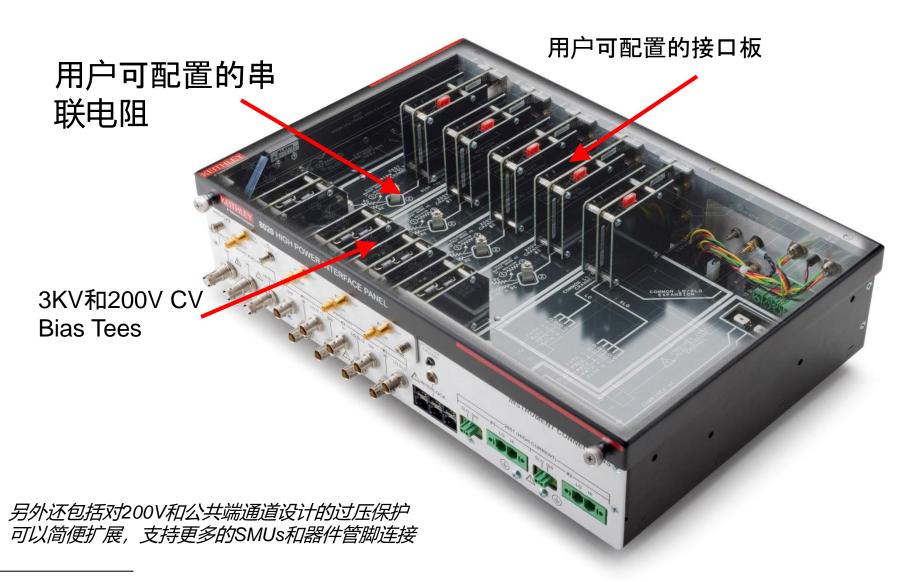
Note: Some users have made their own test adapters for use with Tektronix curve tracers. The 8010-DTB-CT makes the 8010 compatible with such test modules for use with PCT system

晶圆级的测试更难


测试仪器和晶圆的连接都有难度:

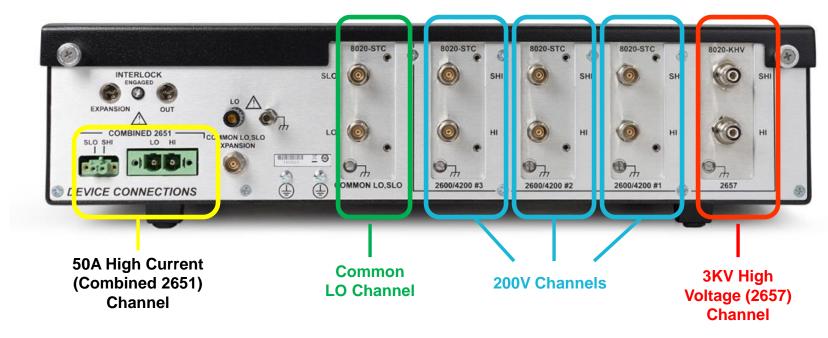
Watch this video: http://youtu.be/Y14J_z1NE8Q

接口转换板8020——晶圆级产品的解决方案


输入端面板 ——连接SMUs

- 高功率接口转换板, 用来解决复杂的仪器联用和探针台连接问题。
 - 。 可接入 3kV, 200V, 100A SMUs

 - 。 增加高压CV测试能力
 - · 容易支持更多的SMU和其他设备
- PCT的附件, S500集成式测试系统



Model 8020内部

Model 8020 和探针台连接

输出端面板 ——连接探针台

- Model 8020也有很多输出接口卡连到探针台。
 - 。 3kV, 200V和公共地电平通道输出卡
 - 。 用户可自定义从8020到DUT的大电流连接,通过 Phoenix螺丝端子接口连接

Model 8020的输出接口卡

Model 8020-KHV Keithley 高压三同轴卡

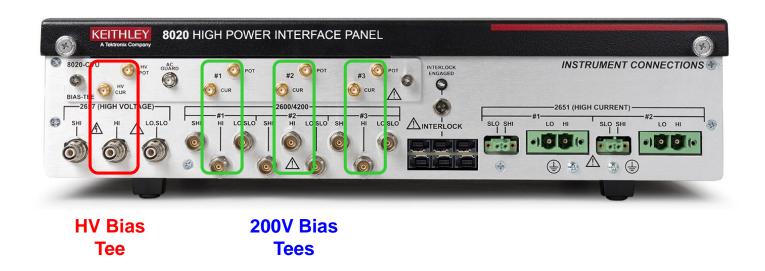
适用于所有通道

Model 8020-AHV Keysight 高压三 同轴卡

适用于所有通道,用来连接Cascade Tesla 探针台

Model 8020-STC 标准三同轴卡

适用于200V和公共地 电平通道



Model 8020-SHV SHV 卡

适用于所有通道

Note: All channels of the Model 8020 must have a designated connector card. A Model 8020-BLK blank plate is also available.

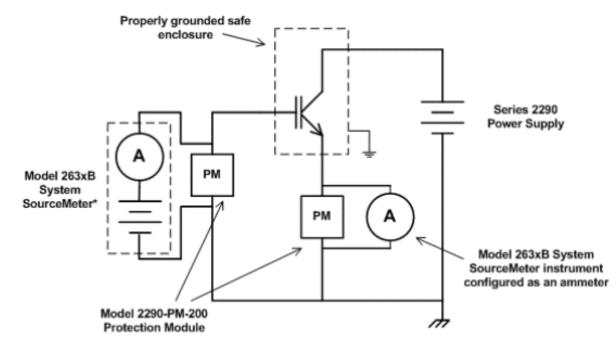
8020的高压电容-电压(C-V)测试

- Model 8020-CVU 是8020的内置Bias Tee(出厂安装好)
- 200V和3KV通道内置的Bias Tee在4个设备接口上都适用于高压CV测试
- 通过bias tees执行IV和CV测试

举例:

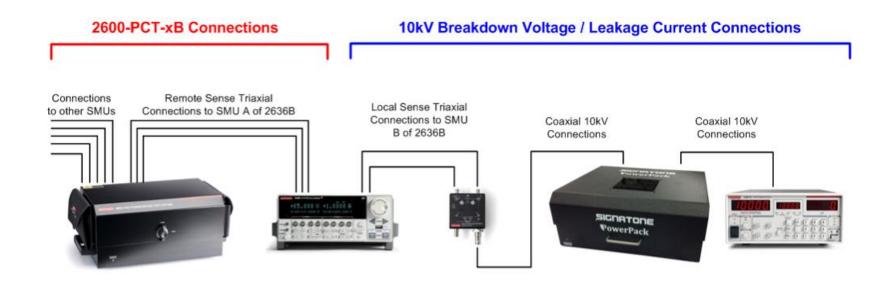
PCT-CVU: PCT IV测试的扩展

- 2,3 和4端口的C-V
- 10KHz~2MHz
- 200V CV solutions
- 3000V CV solutions
- 简化连接


- The PCT-CVU 是一个单独的模块,作为PCT的附件
- CV支持的软件:
 - KITE, 只支持没有Bias Tee的CV函数库
 - ACS Basic, 支持有Bias Tee的CV函数库

10KV的解决方案如何适配PCT?

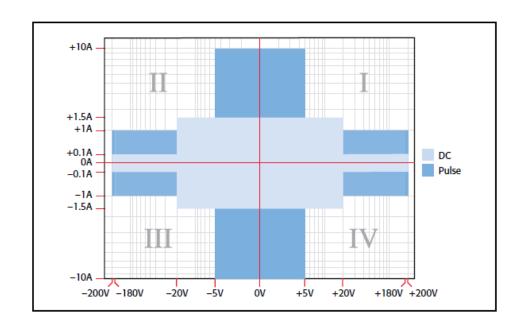
- 10kV的测试能力需要用到电源和1~2个SMU。
- 10kV的解决方案不同于PCT, 它需要单独的测试夹具和单独的保护模块。


2290 高功率源和2636B SMU来测漏电流。

^{*}Optional SourceMeter. Should a bias voltage not be required between gate and emitter, the terminals can be shorted together.

10kV 击穿电压/漏电流解决方案

- ACS BE软件有10KV击穿电压和漏电流的测试库。
 - 。 2和3端口的DUT
- 现有PCT的2636B加上电源模块可重连线到10KV的测试夹具上。



如果有10KV的测试模块,为什么需要3KV的SMU呢?

- 3kV的SMU可在设备的"高"电平端进行低电流测量.
 - 。10kV的解决方案需要一个低压SMU, 比如2626B或2635B在"低"电平端进行低电流测量。
- 3kV SMU 可以与8010 和 8020一起用; 10kV的方案不可以。
- 3kV SMU 可以与HV C-V方案仪器用; 10kV的方案不可以。
- 2657A 3kV SMU 有许多电源没有的特点:
 - 。电压和电流源编程能力
 - 。 4 象限源表
 - 。 电压和电流测量, 2 个内置ADC

2636B(Gate SMU)

- 两个独立的SMU通道
- 高达200V
- 高达10A脉冲
- 0.1fA测量分辨率

KEITHLEY 2636B(100mA@200V, 1.5A@20V)

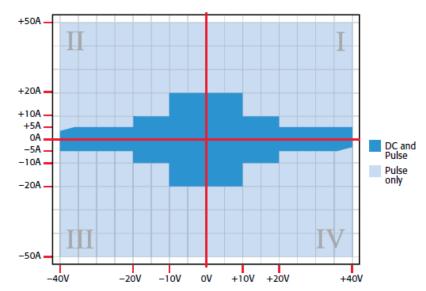
PULSE SPECIFICATIONS				
Region	Maximum Current Limit	Maximum Pulse Width 11	Maximum Duty Cycle 12	
1	100 mA @ 200 V	DC, no limit	100%	
1	1.5 A @ 20 V	DC, no limit	100%	
2	1 A@ 180 V	8.5 ms	1%	
3 13	1 A @ 200 V	2.2 ms	1%	
4	10 A@ 5V	1 ms	2.2%	
	December A		Tuning! Naine /	

	Range	Programming Resolution	Accuracy (1 Year), 23 °C ±5 °C ±(% rdg. + volts)	Typical Noise (peak-peak) 0.1Hz-10Hz
	200 mV	5 μV	0.02% + 375 μV	20 μV
	2 V	50 μV	0.02% + 600 μV	50 μV
	20 V	500 μV	0.02% + 5 mV	300 μV
1	200 V	5 m\/	0.02% ± 50 mV	2 m\/

Range	Programming Resolution	Accuracy (1 Year), 23 °C ±5 °C ±(% rdg. + amps)	Typical Noise (peak-peak) 0.1Hz-10Hz
1 nA	20 fA	0.15% + 2 pA	800 fA
10 nA	200 fA	0.15% + 5 pA	2 pA
100 nA	2 pA	0.06% + 50 pA	5 pA
1 μΑ	20 pA	0.03% + 700 pA	25 pA
10 μA	200 pA	0.03% + 5 nA	60 pA
100 μΑ	2 nA	0.03% + 60 nA	3 nA
1 mA	20 nA	0.03% + 300 nA	6 nA
10 mA	200 nA	0.03% + 6 μA	200 nA
100 mA	2 μΑ	0.03% + 30 μA	600 nA
1 A ¹	20 μA	0.05% + 1.8 mA	70 μA
1.5 A ¹	50 μA	0.06% + 4 mA	150 µA
		0.5.01 10 10 1	

2636B(Gate SMU)

		2636B
	Max Voltage	±200V
*	Max DC Current	±1.5A
*	Max Pulse Current	±10A
*	Current Resolution	0.1fA
*	Voltage Resolution	100nV



2651A: 大电流SMU

- 精确的电压源
- 真电流源
- 6½数字万用表 (DCV, DCI, ohms)
- 高精度电子负载
- 高达50A脉冲(两台仪器高达100A)
- 高达2000W脉冲 / 200 W DC电源
- 100us ~ DC脉冲宽度
- 配备高速度及积分ADCs

VOLTAGE ACCURACY SPECIFICATIONS 1, 2

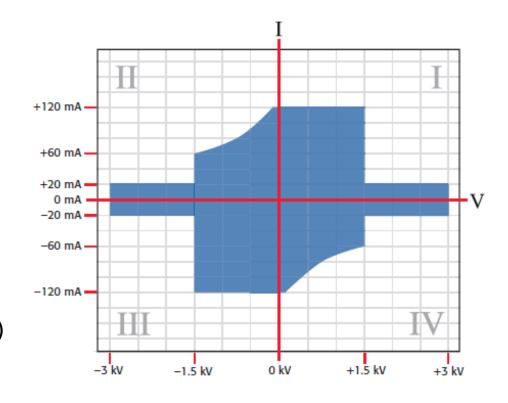
SOURCE

Region	Region Maximums	Maximum Pulse Width ³	Maximum Duty Cycle⁴
1	5 A at 40 V	DC, no limit	100%
1	10 A at 20 V	DC, no limit	100%
1	20 A at 10 V	DC, no limit	100%
2	30 A at 10 V	1 ms	50%
3	20 A at 20 V	1.5 ms	40%
4	10 A at 40 V	1.5 ms	40%
5	50 A at 10 V	1 ms	35%
6	50 A at 20 V	330 μs	10%
7	50 A at 40 V	$300 \mu s$	1%

MEASURE

Range	Programming Resolution	Accuracy ±(% reading + volts)	Noise (Vpp) (typical) 0.1 Hz to 10 Hz	Default Display Resolution	Integrating ADC Accuracy 3 ±(% reading + volts)	High-Speed ADC Accuracy 4 ±(% reading + volts)
100.000 mV	5 μV	$0.02\% + 500 \mu V$	100 μV	1 μV	$0.02\% + 300 \mu V$	0.05% + 600 μV
1.00000 V	50 μV	$0.02\% + 500 \mu V$	500 μV	$10 \mu\text{V}$	$0.02\% + 300 \mu V$	$0.05\% + 600 \mu V$
10.0000 V	$500 \mu\text{V}$	0.02% + 5 mV	1 mV	$100 \mu\text{V}$	0.02% + 3 mV	0.05% + 8 mV
20.0000 V	500 μV	0.02% + 5 mV	1 mV	$100 \mu\text{V}$	0.02% + 5 mV	0.05% + 8 mV
40.0000 V	500 μV	0.02% + 12 mV	2 mV	$100 \mu\text{V}$	0.02% + 12 mV	0.05% + 15 mV

2651A: 大电流SMU


	2651A
Max Voltage	±40V
Max DC Current	±20A
Max Pulse Current	±50A
Current Resolution	1pA
★ Voltage Resolution	1uV
Max Power	2KW or 4KW
Pulse Width	100uS to DC
Duty Cycle	0.01% to 1%

2657A: 大电压SMU

- 电压或真电流源
- 电压或电流脉冲源
- 有电压和电流回读功能
- 内置6½数字万用表(DCV, DCI, ohms)
- 高精度电子负载
- 高达3000V, 高达180W功率 (±3000V@20mA,±1500V@120mA)
- 四象限操作 (源端和电子负载)
- 1fA测量分辨率
- 配备高速度及积分ADCs

CURRENT ACCURACY SPECIFICATIONS 4

600 nA

3 uA

20 mA

VOLTAGE ACCURACY SPECIFICATIONS 1

SOURCE MEASURE		MEASURE	E	
Programming Resolution	Accuracy ±(% rdg + volts)	Display Resolution	Integrating ADC Accuracy ² ±(% rdg + volts)	High Speed ADC Accuracy 3 ±(% rdg + volts)
5 mV	0.03% + 50 mV	100 μV	0.025% + 50 mV	0.05% + 100 mV
10 mV	0.03% + 125 mV	100 μV	0.025% + 100 mV	0.05% + 200 mV
40 mV	0.03% + 375 mV	1 mV	0.025% + 300 mV	0.05% + 600 mV
80 mV	0.03% + 750 mV	1 mV	0.025% + 600 mV	0.05% + 1.2 V
	Programming Resolution 5 mV 10 mV 40 mV	Resolution ±(% rdg + volts) 5 mV 0.03% + 50 mV 10 mV 0.03% + 125 mV 40 mV 0.03% + 375 mV	Programming Resolution Accuracy ±(% rdg + volts) Display Resolution 5 mV 0.03% + 50 mV 100 μV 10 mV 0.03% + 125 mV 100 μV 40 mV 0.03% + 375 mV 1 mV	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

		S	OURCE	MEASURE		
	Range	Programming Resolution	Accuracy ±(% rdg + amps)	Display Resolution	Integrating ADC Accuracy ² ±(% rdg + amps)	High Speed ADC Accuracy ³ ±(% rdg + amps)
	1 nA	30 fA	$0.1\% + 2E^{-12} + VoE^{-15}$	1 fA	$0.1\% + 6E^{-13} + VoE^{-15}$	$0.2\% + 6E^{-13} + VoE^{-15}$
6	10 nA	300 fA	$0.1\% + 5E^{-12} + VoE^{-15}$	10 fA	$0.1\% + 5E^{-12} + VoE^{-15}$	$0.2\% + 5E^{-12} + VoE^{-15}$
	100 nA	3 pA	$0.1\% + 6E^{-11} + VoE^{-13}$	100 fA	$0.1\% + 6E^{-11} + VoE^{-13}$	$0.2\% + 6E^{-11} + VoE^{-13}$
	1 μΑ	30 pA	0.03% + 700 pA	1 pA	0.025% + 400 pA	0.08% + 800 nA
	10 μA	300 pA	0.03% + 5 nA	10 pA	0.025% + 1.5 nA	0.08% + 3 nA
	100 μΑ	3 nA	0.03% + 60 nA	100 pA	0.02 % + 25 nA	0.05% + 50 nA
	1 mA	30 nA	0.03% + 300 nA	1 nA	0.02 % + 200 nA	0.05% + 400 nA
	2 mA	60 nA	$0.03\% + 1.2 \mu\text{A}$	1 nA	0.02 % + 500 nA	$0.05\% + 1 \mu A$

10 nA

100 nA

 $0.02 \% + 5 \mu A$

0.02 % + 24 uA

 $0.05\% + 10 \mu A$

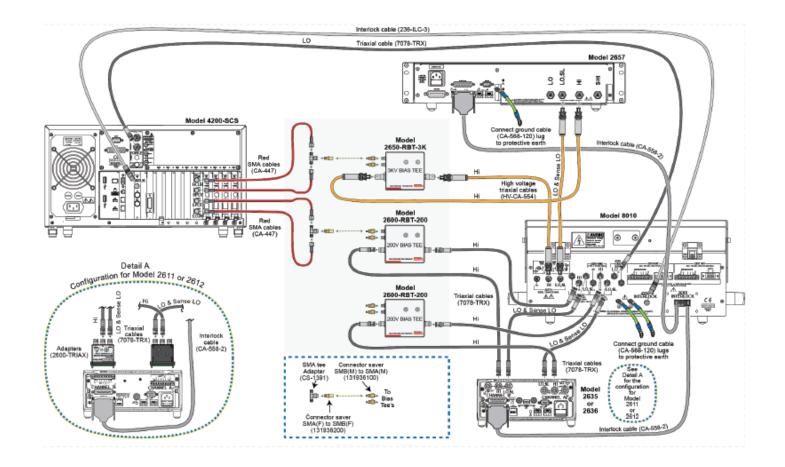
 $0.05\% + 50 \mu A$

 $0.03\% + 12 \,\mu\text{A}$

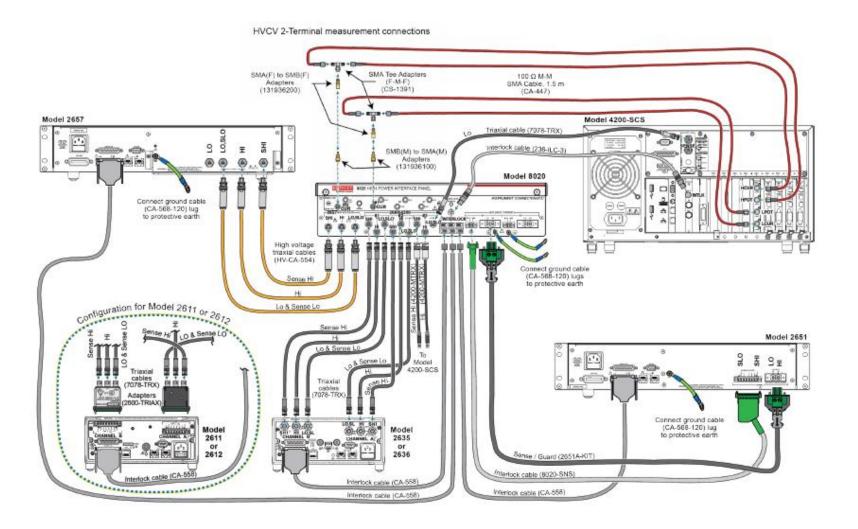
 $0.03\% + 36 \mu A$

2657A: 大电压模块

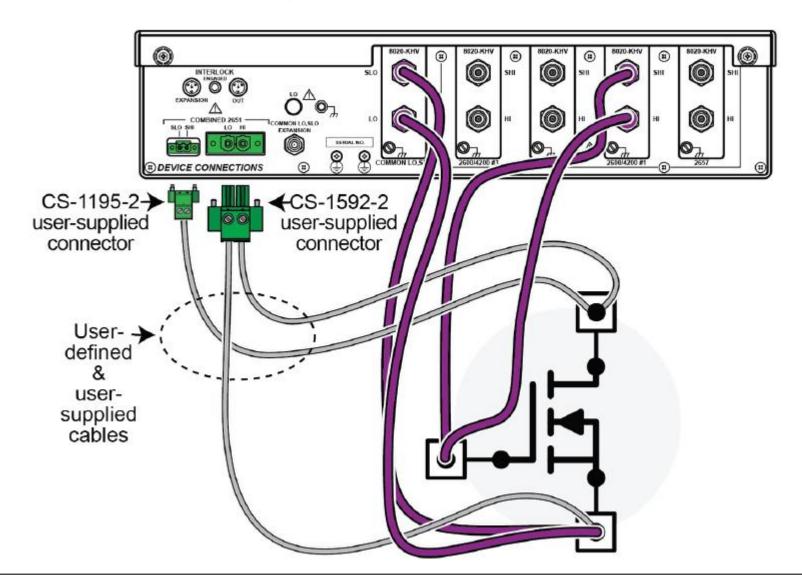
	2657A
Max Voltage	±3KV
Max Current	±120mA
Max Power	180W
Current Resolution	1fA
4-quadrant	Yes



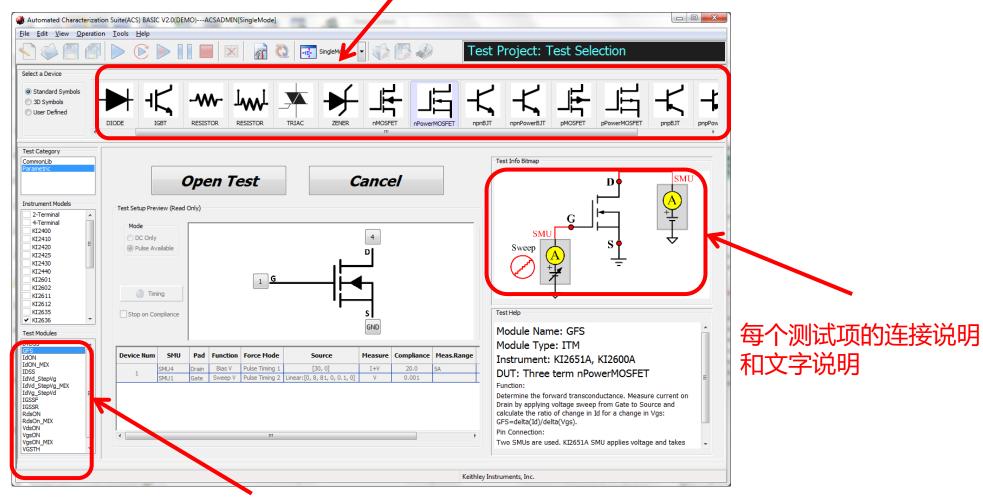
源表间可组可分——灵活多变



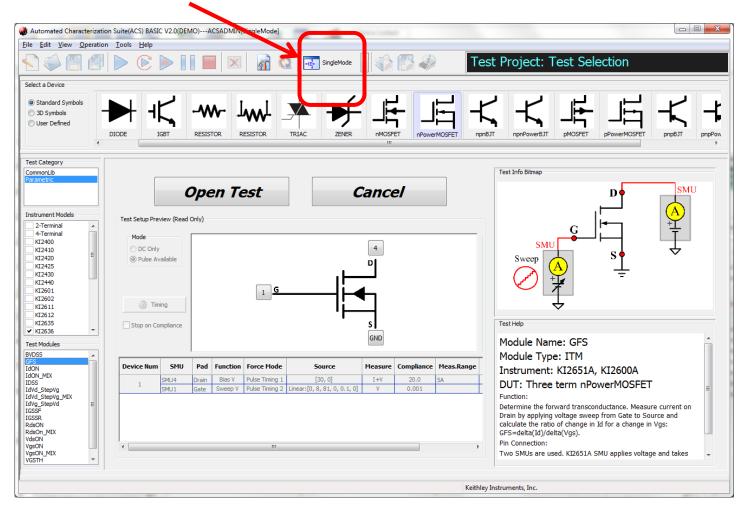
Model 8010测试夹具


CVU-3K-KIT – 3kV HVCV Bias Tee Kit				
Qty	Item	Description		
1	2650-RBT-3K	3kV Bias Tee		
2	2600-RBT-200	200V Bias Tee		
1	386782100	Mounting bracket for bias tees		
2	7078-TRX-1	Standard Triax Cable, 1ft		
1	HV-CA-554-0.5	HV Triax Cable, 0.5m		
1	8020-DP	High Voltage Discharge Probe		
2	CS-1391	SMA Tee		
1	CA-406B	50 Ohm SMA cable (M-M), 13 inches		
6	131936100	SMA to SMB adapters (M-M)		
4	131936200	SMA to SMB adapters (F-F)		

连接Model 8020接口转换面板

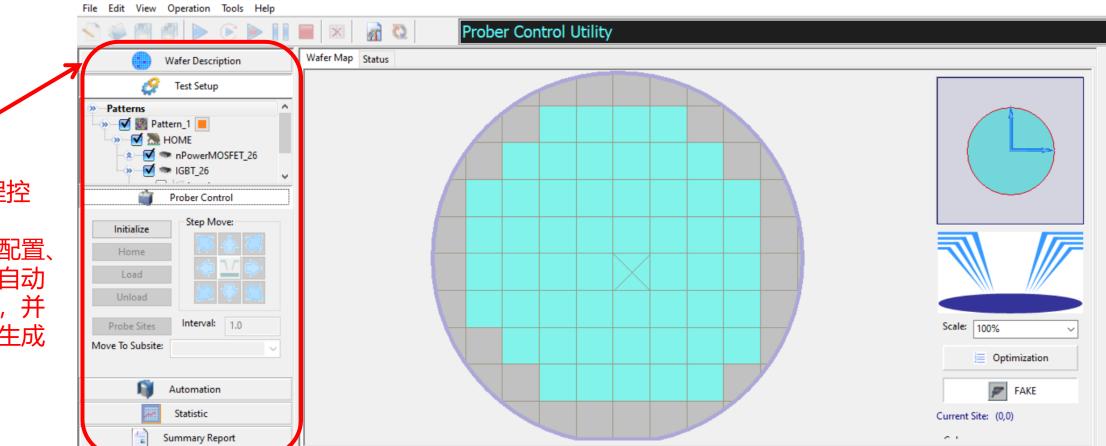

连接Model 8020接口转换面板

PCT软件: ACS

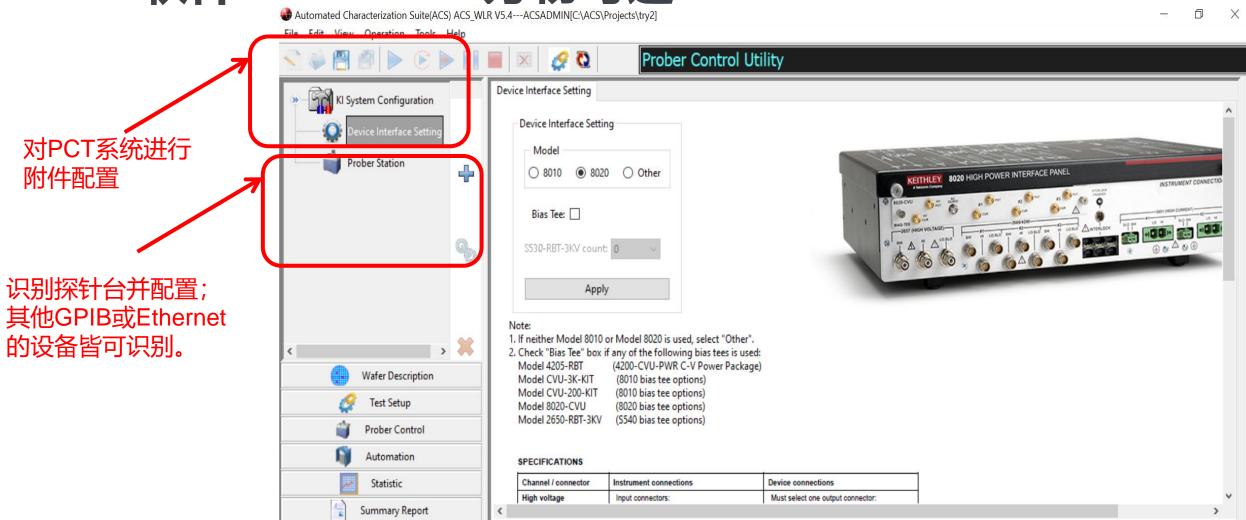


每种类型器件的常用测试

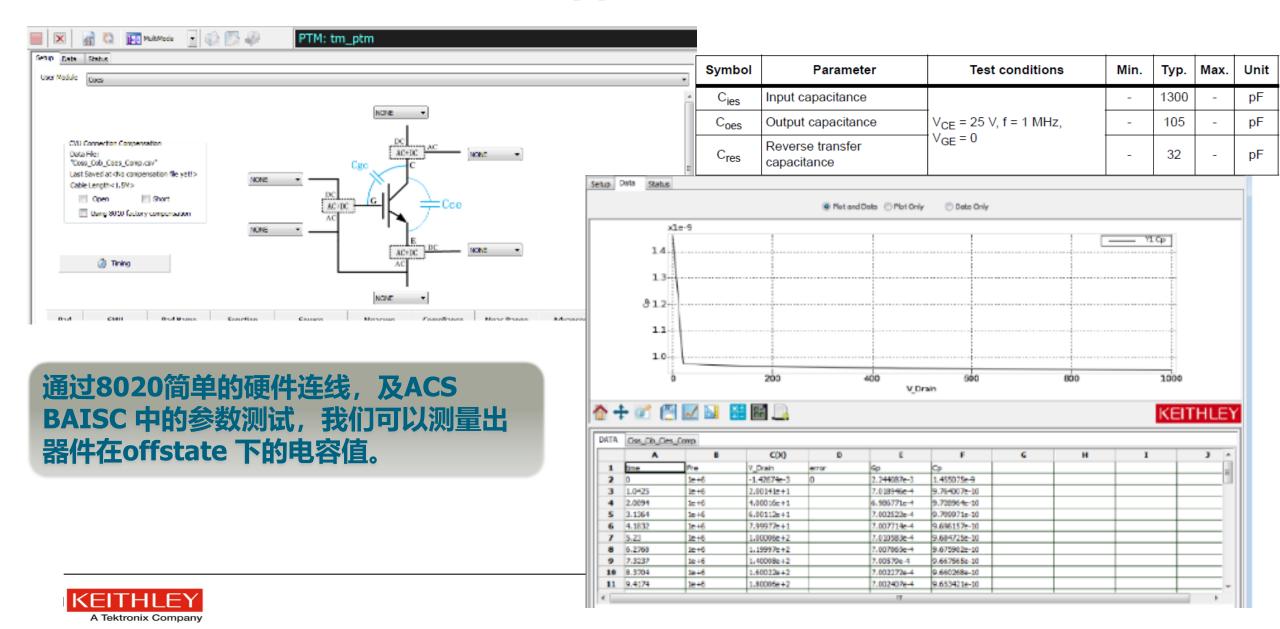
PCT软件: ACS


支持单器件和多器件测试

PCT软件: ACS


Automated Characterization Suite(ACS) ACS WLR V5.4---ACSADMIN[C:\ACS\Projects\try2]

通过GPIB程控探针台,实现探针台配置、测试配置等自动化测试流程,并统计结果,生成报告。



PCT软件: ACS——万物可连

测试示例:动态特性 – 电容测试

泰克高速串行实验室预约

实验室设备涵盖各系列高速示波器、误码仪、源表、电源功率分 析仪及各种配套探头和测试专用夹具。支持各种工业应用标准及 高速接口测试环境。

北京

成都

泰克电源实验室预约

实验室具备数十台测试仪器组成的电源设计全流程测试方案、功 率器件选择, 查找主要损耗点, 优化效率及电源标准预认证。另 外实验室里还有GaN, SiC评估板供您体验!

预约泰克线下实验室

半导体材料与器件科学云讲堂

- ✓ 专业测试平台
- ✓ 六大类测试流程
- ✓ 剖析、解决半导体新问题

关注"泰克科技"公众号

每月2期专题直播,等您解锁!

第一季]直播课程 (4~6月)

纳米材料及纳米电子器件IV和CV测试 4月29日 二维材料/石墨烯及其电子器件IV和CV测试 5月15日 量子材料及超导材料电输运物性表征测试 5月29日 超快脉冲在先进的NVM测试中的应用及神经元 6月

番外篇一

网络测试前瞻

测试技巧: 半导体参数测试仪使用技巧及案例集锦 7月3日

[第二季] 直播课程 (7~9月)

・ 宽禁带半导体 (GaN/SiC) 材料及器件测试 7月17日

·功率IGBT器件测试系统及自动化简介 7月31日

· 微机电系统MEMS测试概述 8月14日

· MOSFET的准静态CV/超低频CV测试 8月28日

· 半导体器件可靠性HCI/NBTI测试 9月11日

· 快速上手自动化半导体参数测试系统 9月25日