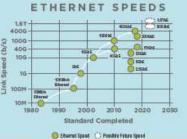
Tektronix


直播大讲堂一深入浅出聊以太网物理层测试 致工程师: This is how legends are born!

主讲人:刘剑一一**泰克高级应用工程师**

2021/3/1

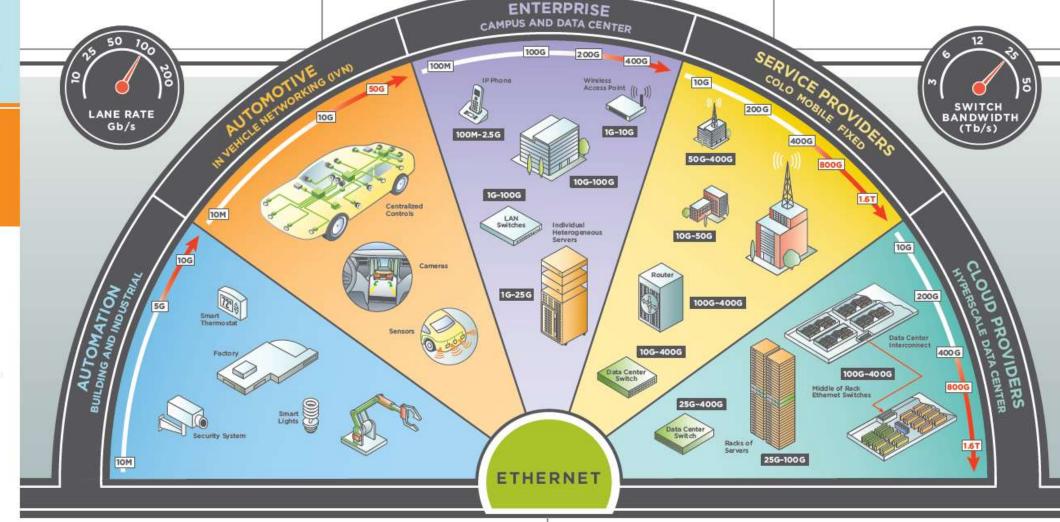
ETHERNET ROADMAP

THE PAST, PRESENT AND FUTURE OF ETHERNET

ethernet alliance www.ethernetalliance.org

INTEROPERABILITY AND CERTIFICATION

The Ethernet Alliance is committed to leading the charge to instilling industry confidence in Ethernet standards through its multivendor interoperability demonstrations and plugfests. Our PoE Cert Fication Program takes this mission to the next level


Our industry-defined PoE Certification Test Plan is based on the Ethernet PoE standard, and products passing this test will be granted the Ethernet Alliance PoE Certification Logo. This logo will provide instant recognition for products that are based on the IEEE 802.3 PoE standard, and provide confidence in the multi-vendor interoperability of those products bearing it. The logos will also provide clear guidance on which devices will work with each other.

The first generation of the program certifies Type1 and Type2 products that use2-Pair of wires. The second generation of the program tackles the IEEE802.3bt standard. This table explains the capabilities of the Types.

Post Typen and Chasses		2-Pair PoE + - Type 2 2-Pair PoE - Type 1				6-Pair PoE In Standor Atra			
Chans	1000	10.00			4	5	8	7	
PSE POwer (W)	15.4	4	7	15.4	38	45	60	75	41

AUTOMOTIVE Ethernet is one of

Ethernet's latest success stories. Forecasts predict up to 500 million ports of Ethernet will ship in over 100M vehicles by 2021. Ethernet links within cars provide data and power to reduce the cost and weight in vehicles while providing economies of scale and interoperability. The bandwidth demand of connected cars could be the next big driver for Ethernet to go beyond 400GbEl ENTERPRISE and Campus applications drive the bulk of Ethernet port shipments with hundreds of millions of ports shipping per year. Ethernet's roots are in enterprise local area networks (LANs) where the entire Ethernet family, including the BASE-T products, can be found. LANs are rich in copper where over 70 Billion meters of cable have been deployed over the past 15 years. Enterprise data centers are very cost sensitive and most servers deploy GbE and 10GbE, and are expected to transition to 25GbE. SERVICE PROVIDERS have driven higher speed Ethernet solutions for decades. Router connections, EPON, client side optics for optical transport network (OTN) equipment, and wired and wireless backhaul. In particular, the 5G mobile deployment is driving dramatic increases in both fronthaul and backhaul applications, and continues to push Ethernet to higher rates and longer distances. And with global demand by consumers for video, this shows no signs of changing.

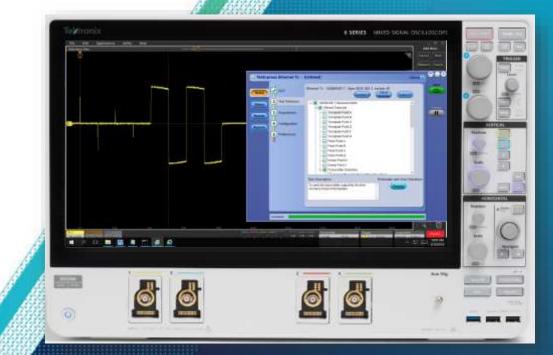
AUTOMATION, BUILDING, AND INDUSTRIAL applications

highlight the need for lower speed Ethernet solutions in harsh environments. Today this space is

CLOUD PROVIDERS were the first to adopt 10GbE servers on a large scale in 2010 for hyperscale data centers. With voracious appetites for applications like AI and Machine Learning, hyperscale

LATEST INTERFACES AND NOMENCLATURE

	Backplane	Twinax Cable	Twisted Pair (1 Pair)	Twisted Pair (4 Pair)	MMF	500m PSM4	2km SMF	10km SMF	20km SMF	40km SMF	80km SMF	Electrical Interface
10BASE-	T1S		T1S/T1L									
100BASE-			T1									
1000BASE-			T1	т								
2.5GBASE-	KX		TI	т								
5GBASE-	KR		ті	т								
10GBASE-			т	т				BIDI Access	BIDI Access	BIDI Access		
25GBASE-	KR	CR/CR-S		т	SR			LR/ EPON/ BIDI Access	EPON/ BIDI Access	ER/ BIDI Access		25GAUI
40GBASE-	KR4	CR4		Т	SR4/eSR4	PSM4	FR	LR4				XLAUI XLPPI
50GBASE-								EPON/ BIDI Access	EPON/ BIDI Access	BIDI Access		LAUI-2/50GAUI-2
	KR	CR			SR		FR	LxR		ER		50GAUI-1
		CR10			SR10		10X10-2km	10X10-10km				CAUI-10 CPPI
100GBASE-	KR4	CR4			SR4	PSM4	CWDM4/	LR4/ 4WDM-10	4WDM-20	ER4/ 4WDM-40		CAUI-4/100GAUI-4
	KR2 KR1	CR2 CR1			SR2 SR1	DR	FR1 100G-FR	LR1 100G-LR			ZR	100GAUI-2 100GAUI-1
200GBASE-	KR4 KR2	CR4 CR2			SR4 SR2	DR4	FR4	LR4		ER4		200GAUI-4 200GAUI-2
400GBASE-	KR4	CR4			SR16 SR8/SR4.2 SR4	DR4	FR8 FR4 400G-FR4	LR8 LR4-6 400G-LR4-10		ER8	ZR	400GAUI-16 400GAUI-8 400GAUI-4


Gray Text = IEEE Standard Red Text = In Standardization Green Text = In Study Group Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces

- 802.3标准第一次颁布是在1985年(IEEE Std 802.3-1985),从初始颁布以来,很多项目一直为标准添加功能或者提供维护更新。每一个802.3的项目或者补充增改都会添加后缀,比如(IEEE Std 802.3ba™-2010)
- IEEE Std 802.3的主要版本在市场上以他们的项目号来鉴别,比如802.3u™增加 了100Mbps的功能,802.3z添加了1000Mbps的功能,802.3ae添加了10Gbps的 功能,802.3ah™定义了接入网以太网,802.3ba添加了40Gbps以及100Gbps的 功能等等,幸运的是,这些主要的版本都被包含进IEEE Std 802.3-2015,而不 再单独维护。

Tektronix

1000/100/10 BASE-T Ethernet

Agenda

- 1000 BASE-T
- 100 BASE-T
- 10 BASE-T
- Return Loss
- TekExpress Ethernet Software
- Summary

1000 BASE-T- Test Modes- Key Measurements

1000BASE-T OSI model

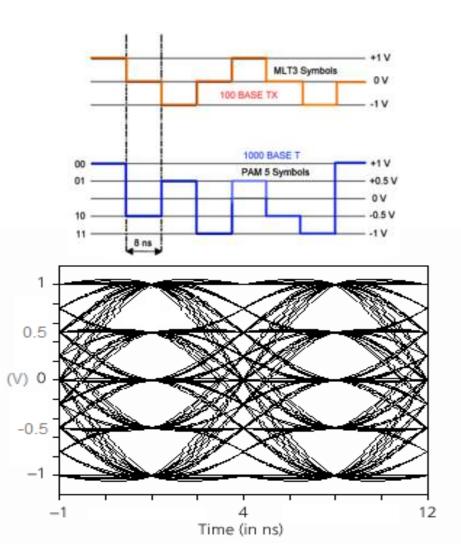

REFER TO 802.3 CLAUSE 40

Figure 40–1—Type 1000BASE-T PHY relationship to the ISO Open Systems Interconnection (OSI) Reference Model and the IEEE 802.3 CSMA/CD LAN Model

1000 BASE-T Basics

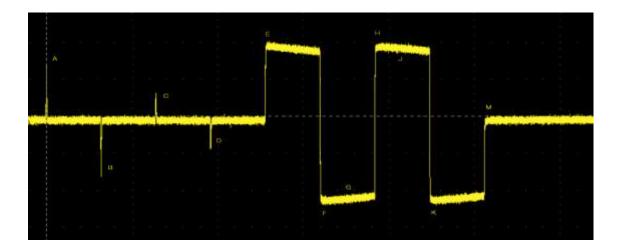
- Popularly known as Gigabit Ethernet (GigE)
- Still widely adopted and popular in Office and Industrial connectivity environment
- Four signal pairs for full-duplex transmission and reception over CAT-5 balanced cabling
- The transmission occurs at a data rate of 250 Mbps over each pair
- Employs a four-level, PAM5 encoding signaling scheme

1000 BASE-T Multi-Level PAM5 Encoded Signal

1000 BASE-T Core Measurements

- 1000 BASE-T tests are performed by setting the DUT in certain 'test modes' specified in the standard
- Test modes when enabled in the DUT helps to test waveform characteristics like Jitter, Distortion and get an insight into Eye diagram margins
- Test modes only change the data symbols provided to the transmitter circuitry; do not alter the electrical and jitter characteristics from those of normal operation

Test Mode	Test	IEEE 802.3 Reference
	Peak	40.6.1.2.1
Test Mode-1	Droop	40.6.1.2.2
	Template	40.6.1.2.3
Test Mode-2	Master Jitter	40.6.1.2.5
Test Mode-3	Slave Jitter	40.0.1.2.5
Test Mode-4	Distortion MDI Return Loss MDI Common Mode Voltage	40.6.1.2.4 40.8.3.1 40.8.3.3

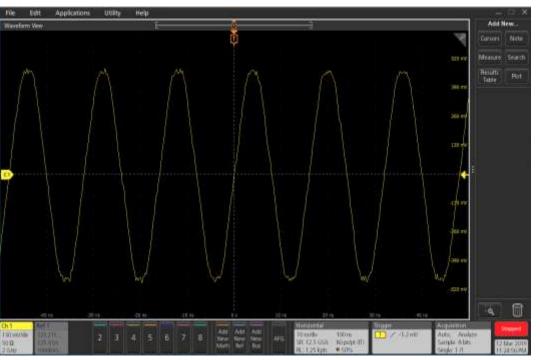

1000 BASE-T Test Modes

TEST MODE-1

- When test mode 1 is enabled, the PHY transmits a sequence of data symbols continually from all four transmitters
- This sequence is repeated continually without breaks between the repetitions when the test mode is enabled
- The Test Mode-1 is used to test for Template, Peak and Droop conformance tests

Sequence	Signal Level	Symbol Count
Sequence-1	1x +2	127x 0's
Sequence-2	1x -2	127x 0's
Sequence-3	1x +1	127x 0's
Sequence-4	1x -1	127x 0's
Sequence-5	128x +2, 128x -2, 128x +2, 128x -2	
Sequence-6		1024x 0's

1000BASE-T Test Mode-1 symbol table



1000BASE-T Test Mode-1 waveform

1000 BASE-T Test Modes

TEST MODE-2 AND TEST MODE-3

- When test mode 2 is enabled, the Transmitter sends out the data symbol sequence of levels +2 and -2 repeatedly on all four channels
- The pattern looks similar to a clock pattern
- The transmitter times the transmitted symbols from a 125.00 MHz ± 0.01% clock in the Master timing mode
- The Test Mode-3 follows the same data symbol sequence as Test Mode-2 except that the transmitter times the transmitted symbols from a 125.00 MHz ± 0.01% clock in the Slave timing mode

1000BASE-T Test Mode-2 waveform


1000 BASE-T Test Modes

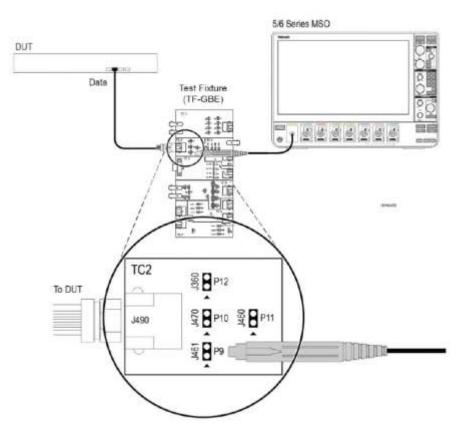
TEST MODE-4

 When Test Mode-4 is enabled, the transmitter sends out sequence of symbols generated by a scrambler generator polynomial, bit generation, and level mappings as defined in the IEEE spec

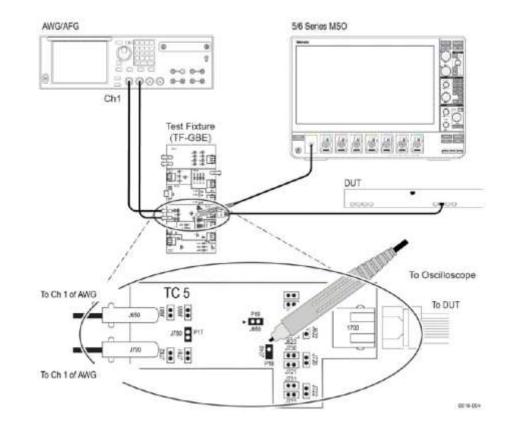
 $g_{s1} = 1 + x^9 + x^{11}$

 The maximum-length shift register used to generate the sequences defined by the polynomial is updated once per symbol interval (8 ns) resulting in a scrambled signal output.

1000BASE-T Test Mode-4 waveform


1000 BASE-T Measurements

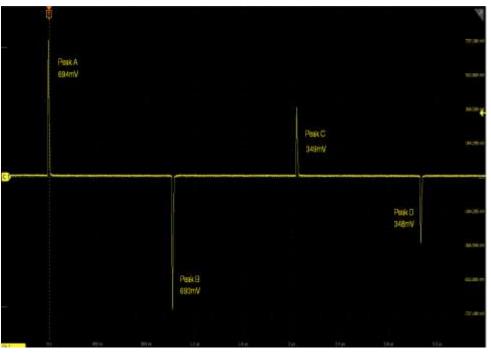
CORE SCOPE BASED MEASUREMENTS


- Template (with and without disturber)
- Peak Volt (with and without disturber)
- Droop (with and without disturber)
- Distortion (with and without disturber; with and without clock)
- Jitter Master Filtered and Unfiltered (with and without clock)
- Jitter Slave Filtered and Unfiltered (with and without clock)
- CM Voltage
- Return Loss

1000 BASE-T Measurements

TEMPLATE, PEAK VOLT & DROOP (SETUP DIAGRAM)

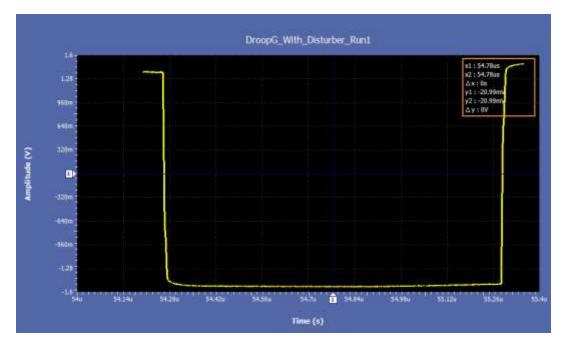
1000BASE-T Template, Peak Volt & Droop (without Disturber)



1000BASE-T Template, Peak Volt & Droop (with Disturber)

Peak

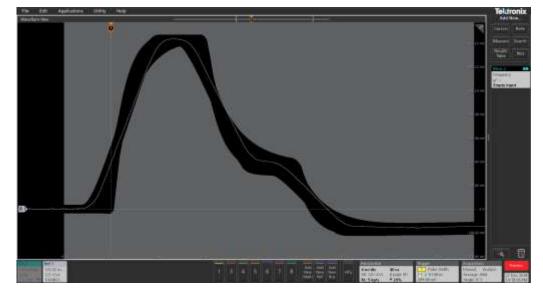
- The peak test is performed at the peak of the waveform at points A, B, C and D
- The criteria for passing the test is that that absolute value of the peak of the waveform at points A and B, must fall within the range of 670 mV to 820 mV (750 mV ± 0.83 dB)
- The absolute value of the peak of the waveforms at points A and B should differ by less than 1% from the average of the absolute values of the peaks of the waveform at points A and B
- The absolute value of the peak of the waveform at points C and D should differ by less than 2% from 0.5 times the average of the absolute values of the peaks of the waveform at points A and B

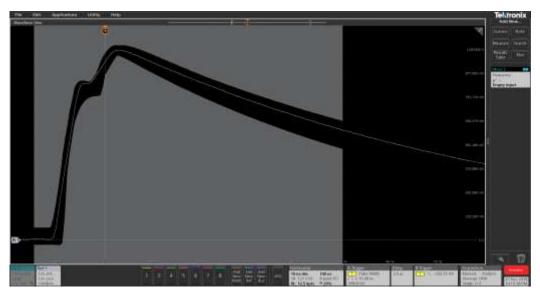


Peak points of 1000BASE-T Signal

Droop

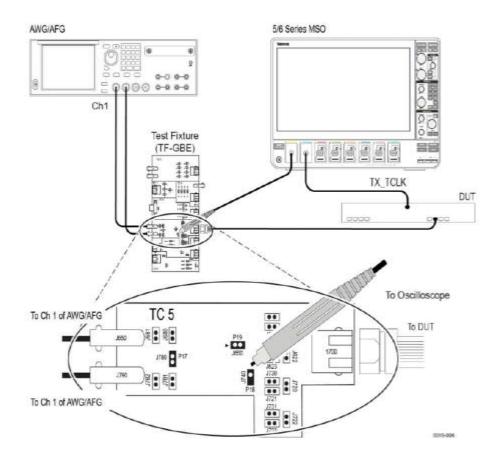
- This test measures the voltage as a magnitude of the negative peak value of the waveform at point G.
- For a pass condition, the measured value should be greater than 73.1% of the magnitude of the negative peak value of the waveform at point F.
- Point G is defined as the point at a time base of 500ns after point F, where Point F is the point where the waveform reaches its minimum value.
- The same formula is used to compute Droop test results at points J and H.

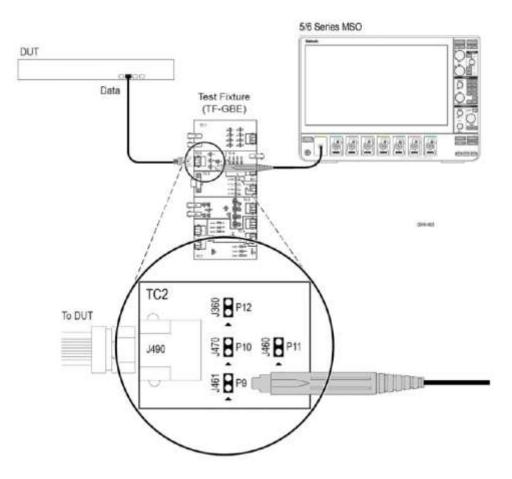

Result computed at Droop G point of 1000 BASE-T Signal


Template

- A template test is like a mask test which specifies the transmitter signal tolerance limits at each of the points A, B, C, D, F and H.
- The 1000 BASE-T spec defines template for each of the points and allows for waveforms to be shifted in time, as appropriate to fit within the template.
- A normalization setting is defined in the spec for each of the points

Waveform Points	Normalization Definition
Point A	WaveformA/VpeakA
Point B	WaveformB/VpeakA
Point C	WaveformC/(VpeakA/2)
Point D	WaveformD/(VpeakA/2)
Point F	WaveformF/VpeakF
Point H	WaveformH/VpeakH

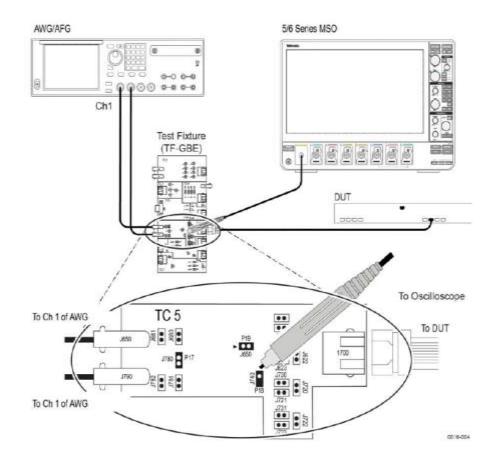

Template test at point A

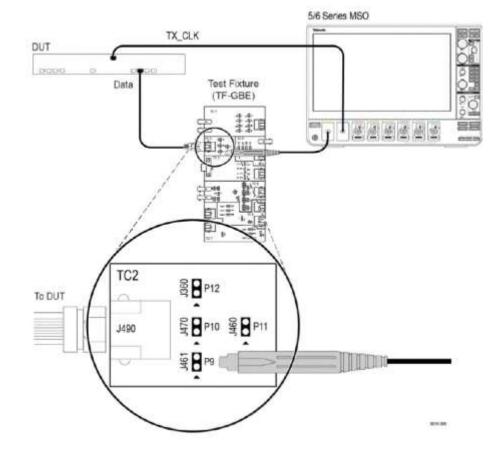

Template test at point F

1000 BASE-T Measurements

DISTORTION (SETUP DIAGRAM)

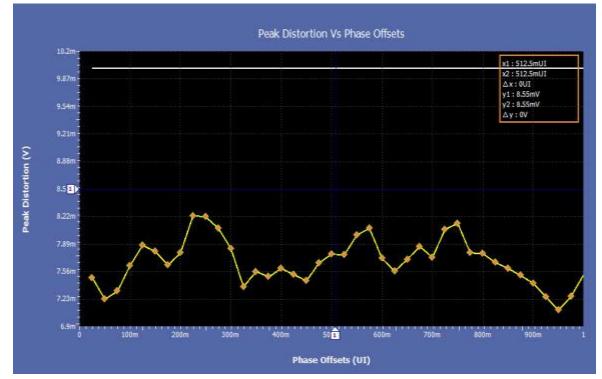
1000BASE-T Distortion (with Disturber; with clock)




1000BASE-T Distortion (without Disturber; without clock)

1000 BASE-T Measurements

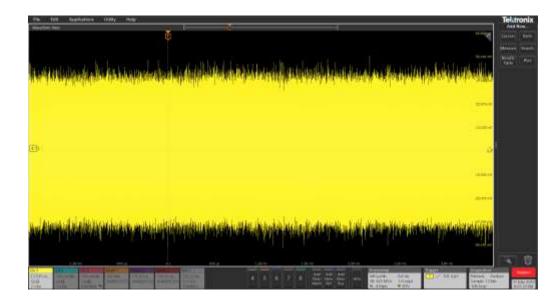
DISTORTION (SETUP DIAGRAM)



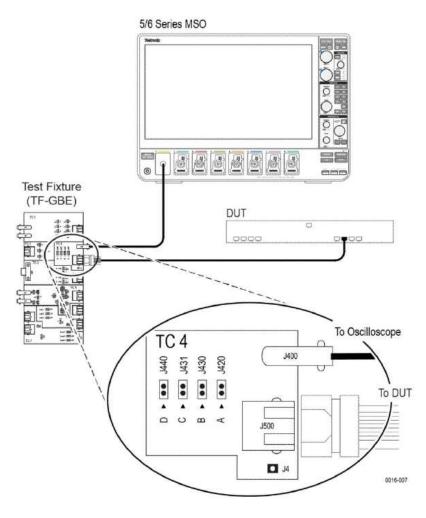
1000BASE-T Distortion (without Disturber; with clock)

Distortion

- Distortion test is performed by putting the device under test in test mode 4 and observing the differential signal output at the MDI using transmitter test fixture, for each pair, with no intervening cable.
- For passing the test, the peak distortion must be less than 10 mV
- The peak distortion is determined by sampling the differential signal output with the symbol rate TX_TCLK at an arbitrary phase and processing a block of any 2047 consecutive samples with a block of code listed in IEEE specification



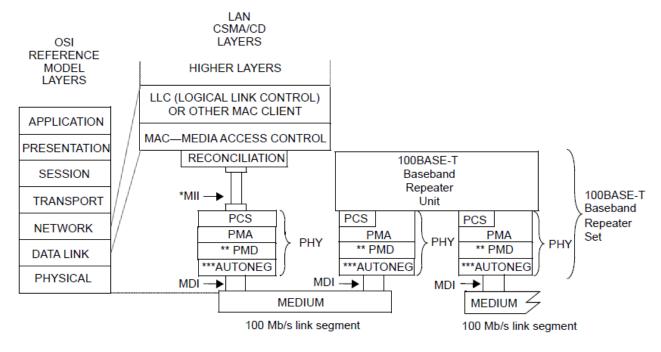
Transmitter Distortion without TX_CLK



Common Mode Voltage

 This test measures the magnitude of the total common-mode output voltage which must be less than 50mV peak-to-peak when transmitting data at frequencies above 1 MHz

Waveform view of the CM Voltage test



1000 BASE-T Common Mode Voltage Test Setup

100 BASE-T- Key Measurements

100 BASE-T Basics

MDI = MEDIUM DEPENDENT INTERFACE PO MII = MEDIA INDEPENDENT INTERFACE PN PH

PCS = PHYSICAL CODING SUBLAYER PMA = PHYSICAL MEDIUM ATTACHMENT PHY = PHYSICAL LAYER DEVICE PMD = PHYSICAL MEDIUM DEPENDENT

* MII is optional for 10 Mb/s DTEs and for 100 Mb/s systems and is not specified for 1 Mb/s systems.

** PMD is specified for 100BASE-X only; 100BASE-T4 does not use this layer.

Use of MII between PCS and Baseband Repeater Unit is optional.

*** AUTONEG is optional.

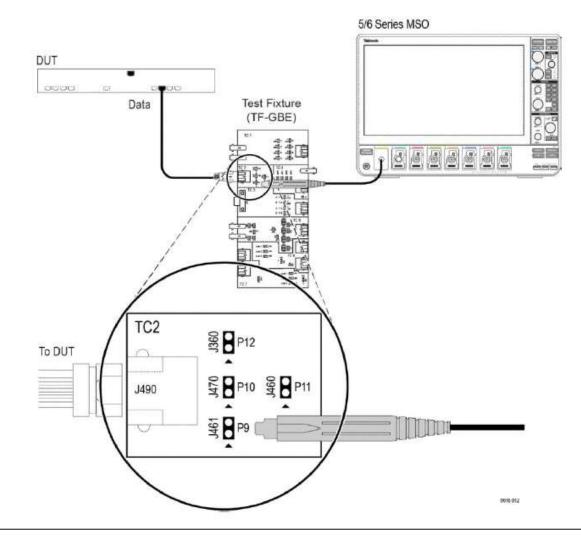
Figure 21–1—Architectural positioning of 100BASE-T

100 BASE-T Basics

- 100BASE-TX uses one signal pair for transmission and another pair for collision detection and receive.
- The transmission occurs at 125 MHz frequency operating at 80% efficiency.
- It employs a three-level, MLT-3 line encoding signaling scheme
- The ANSI X3.263 and IEEE 802.3 standards define the following array of compliance tests

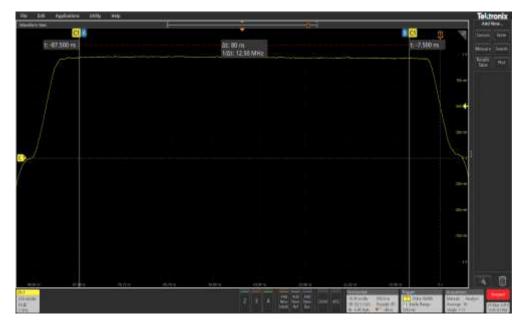
100 BASE-TX Multi-Level Transmit 3 (MLT-3) Line Encoding

Domain	Test	ANSI X3.263 Reference				
	Output Voltage	9.1.2.2				
Amplitude	Overshoot	9.1.3				
	Amplitude Symmetry	9.1.4				
Return Loss	Return Loss	9.1.5				
	Rise Time	9.1.6				
Time	Rise Time	9.1.6				
	Rise/Fall Time	9.2.6				
Jitter	Total Transmit Jitter	9.1.9				
Jillei	Duty Cycle Distortion	9.1.8				
Both	Template	Annex J				


100 BASE-T Measurements

CORE SCOPE BASED MEASUREMENTS

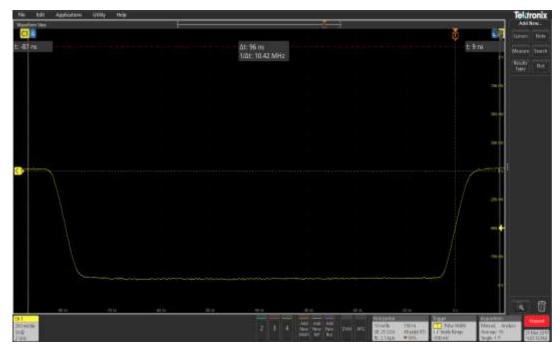
- Template
- Differential Output Voltage
- Signal Amplitude Summary
- Rise and Fall Time
- Rise/Fall Time Symmetry
- Waveform Overshoot
- Jitter
- Duty Cycle Distortion
- Return Loss


100 BASE-T Connection Diagram

FOR ALL SCOPE BASED TESTS

100 BASE-T Amplitude Domain Tests

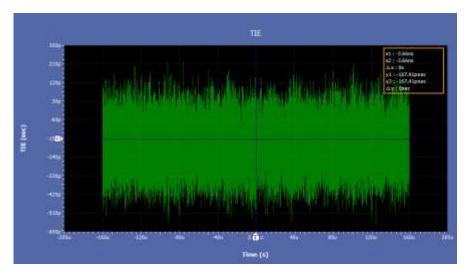
- These tests are performed on the portion of the random packet signal that generates a pulse going from 0V to Vout (positive and negative).
- For reliable measurement, the test is performed on the longest pattern with no transition.
- The standard describes 112 ns pulse (14-bit pattern) for this purpose. However, these patterns may not be easily available.
- Both are positive and negative pulses duration are tested

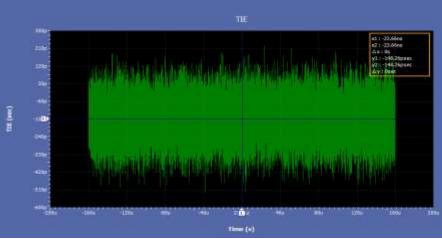

Amplitude tests performed on long run of logic high levels

Signal is termed "rising" when transitioning from the baseline voltage to either +Vout or –Vout, and is termed "falling" when transitioning from either +Vout or -Vout to the baseline voltage.

100 BASE-T Time Domain Tests

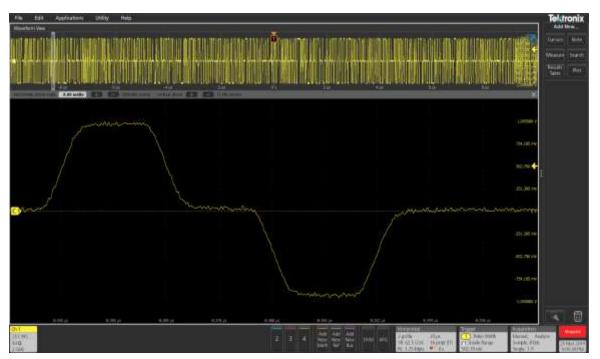
- The waveform region is selected such that rise and fall times of the signal are minimally affected by the ISI.
- A longest pulse that is preceded and succeeded by at least two consecutive symbols at baseline voltage is chosen
- Both positive and negative pulses of 80 ns (10 bits times 8 ns) duration are considered




10 consecutive bits for rise/fall time measurements

100 BASE-T Jitter

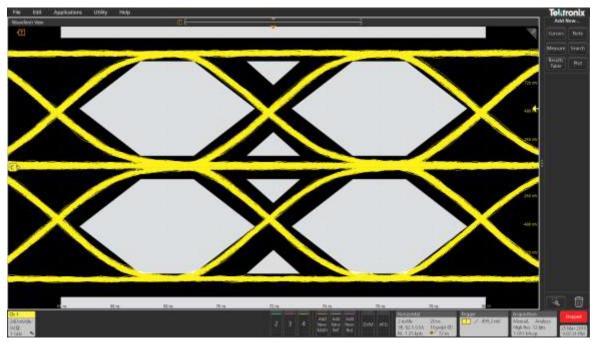
- For 100 BASE-T Jitter, the Peak-to-peak jitter is measured using scrambled IDLEs or HALT line state.
- The most common method for the jitter test is calculating the Time Interval Error (TIE) which is difference between recovered edge time and actual edge time.
- TIE is calculated for the upper and lower half of the waveform and the peak to peak value is reported.
- The result needs to be lower than 1.4ns for the test to pass.



Positive and Negative Jitter measured using TIE Jitter Method

100 BASE-T Duty Cycle Distortion (DCD)

- The system is driven with a determined clock-like pattern (such as 0-1-0-1-0-1-0-1).
- DCD is measured at portions of the signal where the four successive MLT-3 transitions generated by a 0-1-0-1 NRZ bit sequence that is preceded and succeeded by at least two consecutive symbols at the baseline voltage
- The pattern has widths of positive and negative polarity MLT-3 pulses that are 16 ns wide



Test pattern for Duty Cycle Distortion test

100 BASE-T AOI Template Test

- For 100BASE-TX, the AOI Template Mask is defined so that the signal distortions such as overshoot, jitter, incorrect rise and fall times, etc., will cause the mask test to fail.
- The specifications in Annexure J also specify a tolerance of 5% on the mask geometries.

Testing positive and negative side, simultaneously for AOI Template test

10 BASE-T- Key Measurements

10 BASE-T Basics的OSI模型

数据链路层中的MAC子层以及物理层

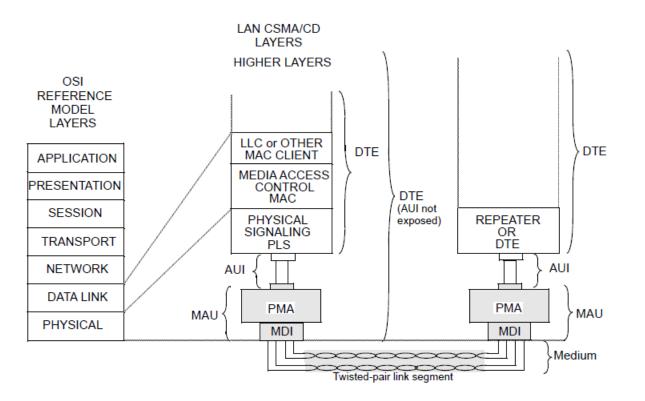
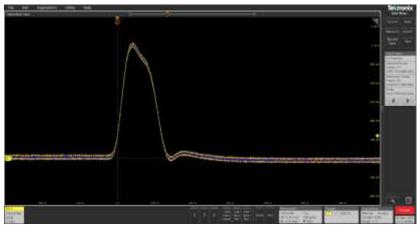


Figure 14–1—10BASE-T relationship to the ISO/IEC Open Systems Interconnection (OSI) reference model and the IEEE 802.3 CSMA/CD LAN model



10 BASE-T Basics

- Uses Category 3 (CAT3) cable or better with two unshielded twisted-pair (UTP) wires. These twisted-pair wires are referred to as the 'Media' in the IEEE specifications
- One pair is for Tx and the other pair is for Rx. Each pair is a differential signal. None of the cable wires are connected to ground at the network nodes.
- 10BASE-T is Manchester encoded data in which data and clock signals are combined to form a single self-synchronizing data stream.
- A transition always occurs in the middle of each bit and the bit cell period is 100 ns.
- After the start of TP_IDL there are no transitions (differential voltage remains at 0 mV ± 50 mV) until the next Ethernet frame or link test signal.
- During TP_IDL the 10BASE-T link test pulse is transmitted every 16 ms ±8 ms. The link test pulse signal is a positive pulse 585 mV to 3.1V and it is a minimum of ~60 ns wide and a maximum of ~200 ns wide.

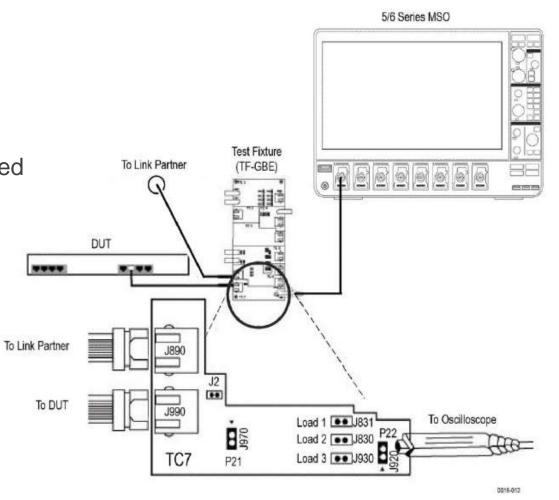
10BASE-T Manchester 11000101 coding with a transition in the middle of each bit.

10BASE-T Link test pulse, transmitted every 16ms ±8ms and is ~60ns to ~200ns wide

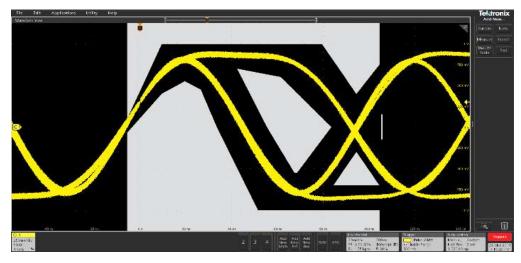
Positive link pulse confirms the differential probe is correctly connected to the Ethernet 10BASE-T twisted pair

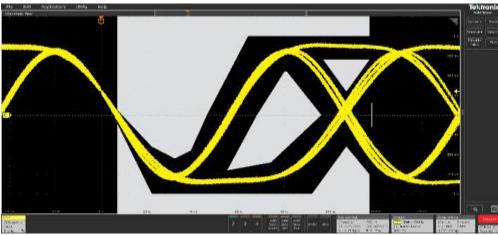
10 BASE-T Measurements

CORE SCOPE BASED MEASUREMENTS

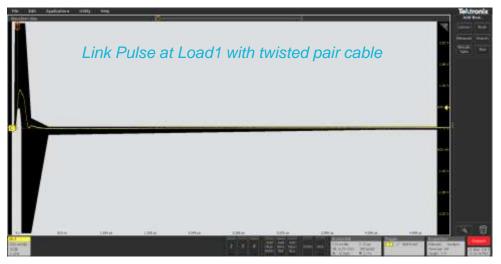

- Template
 - \circ MAU
 - Link Pulse
 - TP_IDL
- Differential Voltage
- Harmonic
- Jitter (with and without cable)
- CM Voltage
- Return Loss

Test Reference : Subclause 14.3.1.2.1 of IEEE standard 802.3-2002 (for 10BASE-Te, refer to IEEE standard 802.3az)


10 BASE-T Measurements


MAU, TP_IDL LOAD WITH TPM, AND LINK PULSE LOAD WITH TPM

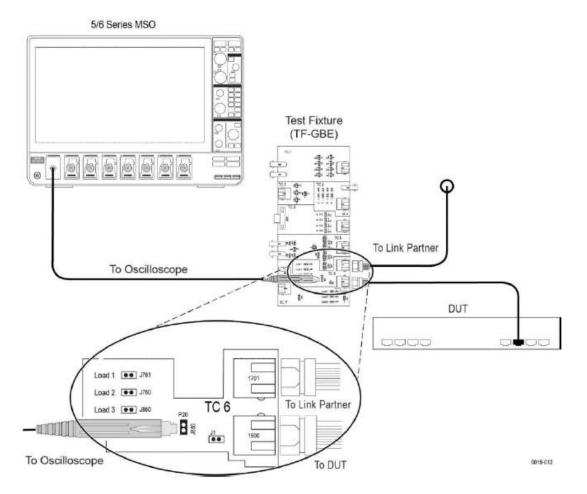
The standard permits scaling the MAU templates by a factor of 0.9 to 1.1. The TP_IDL and Link Pulse tests need to be performed with and without a Twisted Pair Model (TPM) as defined by the standard.



10 BASE-T Template

MAU Template test – Internal (Top) and Inverted (Bottom)

A LTP should be bounded between ± 3.1 V with a width of no greater than 42 Bit Times (4200 ns)

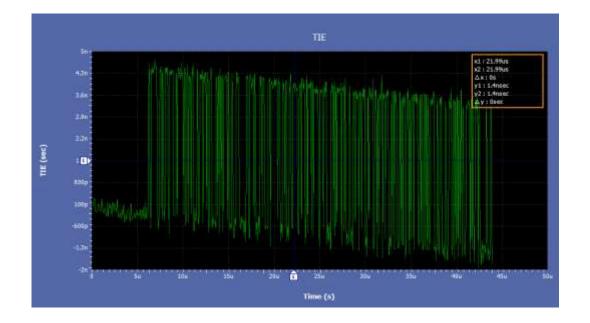


The Start of Idle (SOI or Start of TP_IDL) occurs at the end of a packet and shall always begin with a positive waveform.

The SOI indicates when the end of a packet and the beginning of idle. The SOI shall fit with in the template below when connected to a load.

10 BASE-T Measurements

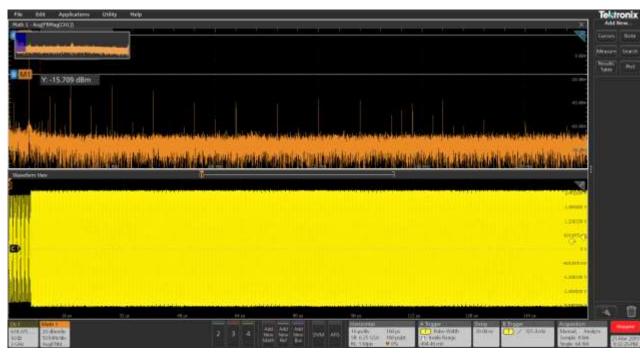
TP_IDL LOAD WITHOUT TPM, LINK PULSE LOAD WITHOUT TPM, HARMONIC, AND DIFFERENTIAL VOLTAGE



39

10 BASE-T Measurements

The peak differential voltage a device transmits shall be between 2.2V and 2.8V. This means the height of a frame should never be below -2.8 volts and above +2.8volts or should never be below 2.2 volts and above -2.2 volts.



Jitter is measured at the 8 and 8.5 Bit times with and without the TPM present. With out the TPM a zero crossing should occur ± 20 ns at the 8 and 8.5 BT. With the TPM a zero crossing should occur ± 11 ns at the 8 and 8.5 BT.

10 BASE-T Harmonics

- When monitoring a series of all ones (or all zeroes) on the TD circuit, each harmonic shall be at least 27 dB below the 10 MHz fundamental.
- Compute the power contained within the fundamental frequency component of the all-zeros portion.
- Compute the power contained within the other harmonics within the frequency spectrum of the all-zeros portion
- All of the harmonics shall be at least 27 dB below the fundamental

Méasurement Details	Measured Value	Text Result	Marpin	Low Limit	High Limit	Linits	Comments
Harmonic Barri COMMENTS	- 33,6000	Pass amental Frequency	H 6.6000	N.A.	-17	đĩ	Press (Mag) Rec OMH25104Bm (PH 2 10" 17.89 (MA) 20 1 - 24.30 (P 40 1 - 44.30 (P 40 1 - 44.30 (P 40 1 - 44.30 (P 50 1 - 25.71 (P 40 1 - 48.38 (P 50 - 25.78 (P 60 1 - 68.70 (P 50 1 - 59.41 (P 100 1 - 59.42 (P 100 1 - 59.41 (P 100 1 - 59.41 (P 100 1 - 59.41 (P 100 1 - 60.22 (P 100 1 - 60.22 (P 100 1 - 60.22 (P 200 1 - 60.27 (P 200 1 - 60.27 (P 200 1 - 60.27 (P 200 1 - 59.31 (P 220 1 - 55.31 (P 240 1 - 70.79 (P 250 1 - 55.31 (P 260 1 - 56.56 (P)

Return Loss

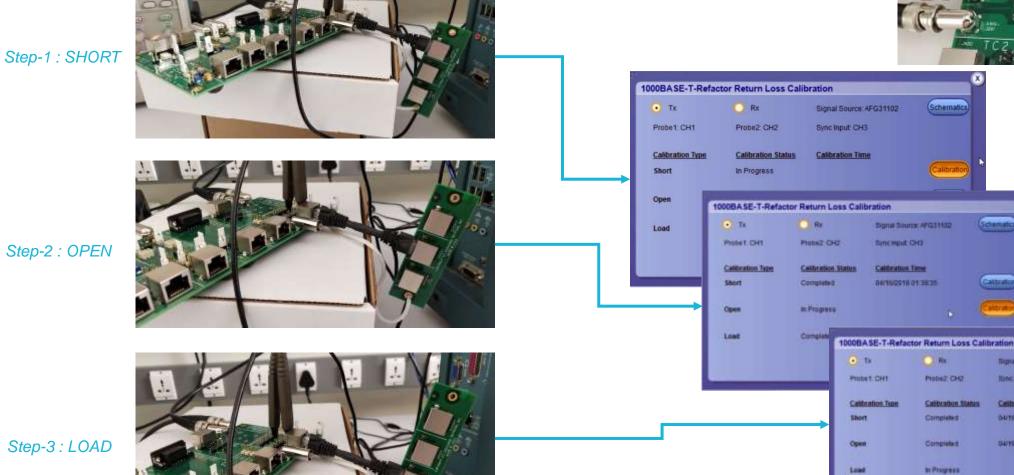
Return Loss Testing

The return loss of the cabling system can affect interoperability of the system.

The Ethernet standard defines the minimum amount of attenuation the reflected signal should have relative to the incident signal. The Return Loss test measures the impedance, typically over the range of 100 Ω ±15%.

TekExpress Ethernet software performs the Return Loss test for 85, 100, and 115 Ω (111 Ω for 10BASE-T) impedances as prescribed by the standard, using the 5/6 Series MSO and AFG/AWG series used for other tests, enabling efficient usage of resources.

Return Loss Calibration


Tilghal Dource: APG21302

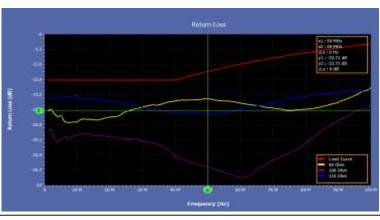
flinc input CH5

Cathratius Tase

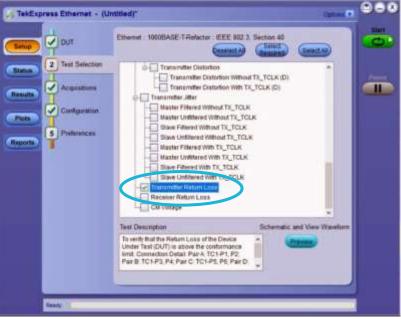
04/16/2019 01:38/25

04/10/2010 01:40 42

Step-2 : OPEN


Step-3: LOAD

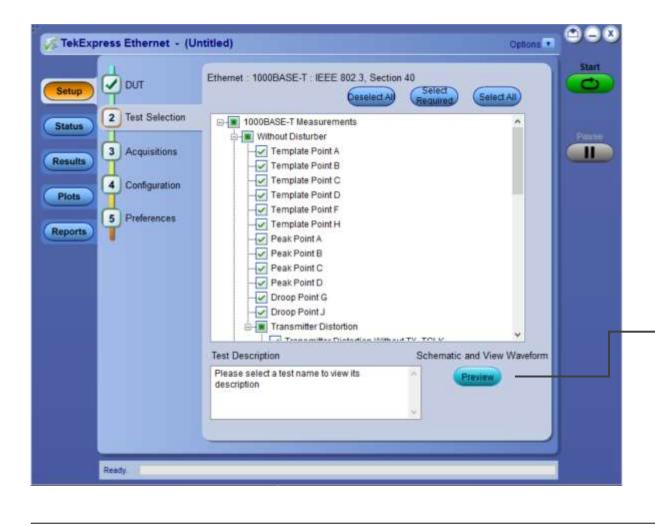
T


CHIDIMO

Return Loss Test

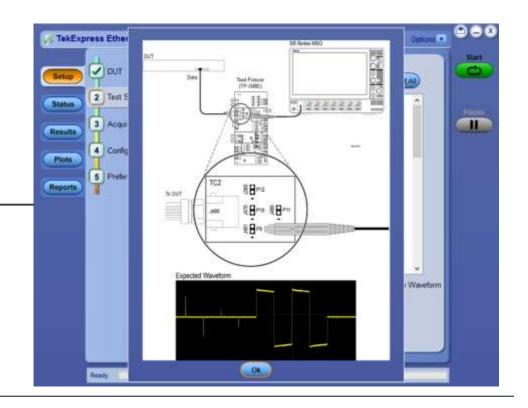
- Once the Return Loss calibration is completed, apply the calibration so the calibration coefficients can be applied during testing.
- Disconnect the cable from calibration fixture and connect to the DUT
- Perform Automated Return Loss testing using TekExpress Ethernet software

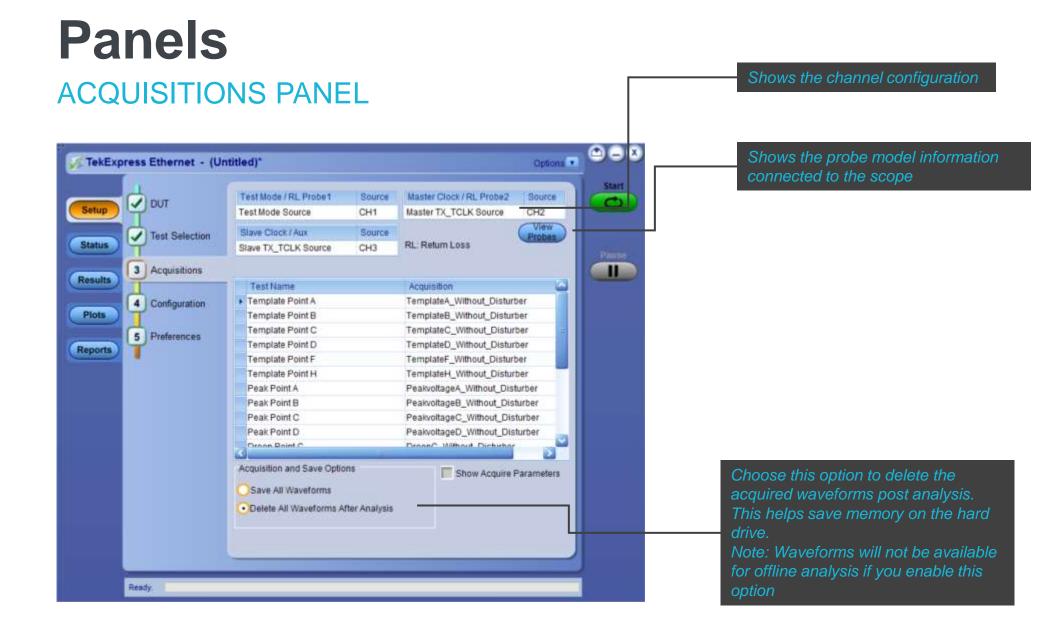
TekExpress Ethernet



V TekExpress Ethernet - (U	ntitled)		Options	
Setup 1 DUT 2 Test Selection 3 Acquisitions	DUT ID DUT001	Use pre-recorded waveform fill	es Parse	Choose, Live of Offline Analysis (some tests like Template only run in Live mode)
Plots Plots Reports Preferences	• 1000BASE-T 100BASE-T 10BASE-T	IEEE 802.3, Section 40 ANSIX3.263-1995 IEEE 802.3, Section 14		Choose the Ethernet test speed
Ready.				

R


Panels TEST SELECTION PANEL

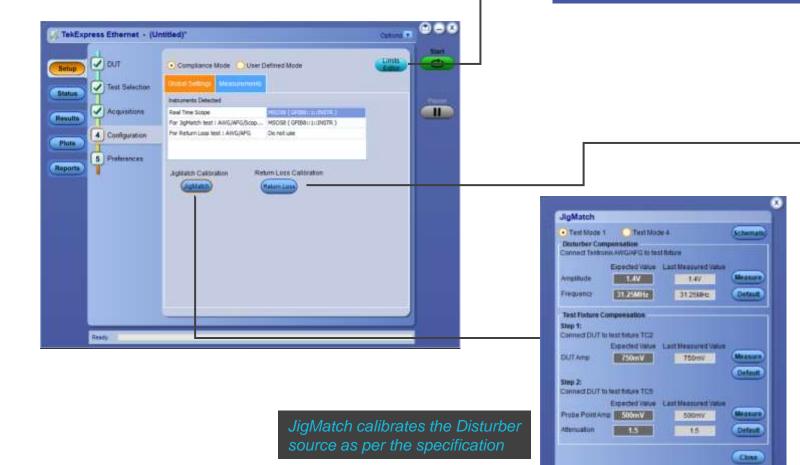

This panels helps user to choose the tests.

The Preview button helps to show the schematic along with an image of the expected waveform.

If the setup is connected correctly, the waveform displayed on the scope should match waveform displayed in the popup. Hence this button acts like a signal validation check even before running the tests

48

TEKTRONIX CONFIDENTIAL


Panels CONFIGURATION PANEL

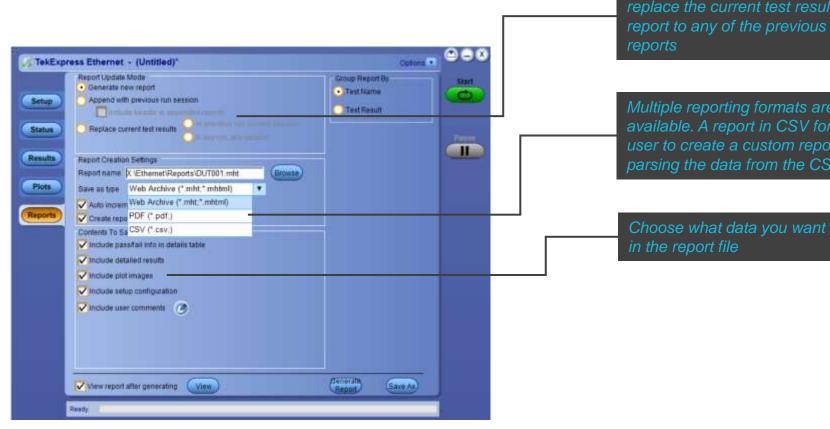
Very or End the origins must be	the I and sould up I	and first starting starts	I DISC.			
Alters out many to bet set a part						
Tellform	Determ	Corners Trong	Lasting	Circurs Thirsy	HighLand	
TempleterA_Hittout_Detarber	TempleteA_WT018	11.8	78-A.:	the Less That Or E	4.	1
Templaced, Without Detailer	Templanet, Initiact.	R.A.	19-A	excess Then Or E-	1	
TempleteC_Ultrust_Detarter	TemplateC_Without	N.A.	BA	++ Lee Then Or E	8	1
Templetel, (Mitmat, Detailor	TemplateD_W#siLk	16.4	14.4	- I was than Or E		1
Terpleter, Without, Dehurber	Templeter (Without -	31.4	75.4	en Loss Than Or E-	8	
Tensioner, Rittrud, Deturber	Templetett, Without	14.A	78.A	THE LAKE THAT OF E		
President Wheel Column	Peelindiageb_2081-	an Graster Than D	470	resident That Or E	400	
simulation (construction	Devator between	witten Then	H-A	5.8	1	
Pasiciphene United Detailer	Autochard With	>+ Grader That C	470	the Least That Or E	100	1

Limits editor enables you to define the limits beyond compliance requirement and test the DUT for design margins

💽 Tx	O Rx	Signal Source: Connect AWG/AFG
Probe1: CH1	Probe2: CH2	Sync Input CH3
Calibration Type	Calibration Status	Calibration Time
Short	Pending	Cal
Open	Pending	Cal
Load	Pending	Cat

Return Loss Calibration calibrates the Return Loss source as per the specification. This supports 'Short', 'Open' and 'Load' calibration

50


Panels PREFERENCES PANEL

This option enables multiple test runs in a single execution. Use this option to check for repeatability of test results

This option enables auto-closing of the Warning and Error messages during the execution, so user need not have to spend time with the setup to click the action dialogue box

This option enables to append and

parsing the data from the CSV file

Choose what data you want included

R

Scope Unform Scope First DATA Probe DATA Probe DATA Probe DATA Probe DATA Probe DATA Pass Pass	ersion	MS0038, PQ2008028 1.12.0.345 TDP1500 Q160006		overall pass/fail result and test times Test result summary indicates test and corresponding pass/fail results for a quick glance
Pass Pass Pass Pass Pass Pass Pass Pass	ersion Model	1.12.0.285 TDP1500		corresponding pass/fail results for a
Pass Pass Pass Pass Pass Pass Pass Pass	Model	TDP1500		corresponding pass/fail results for a
PASS PASS PASS PASS PASS PASS PASS PASS				corresponding pass/fail results for a
Pass Pass Pass Pass Pass Pass Pass Pass	Serial Norther	0159896		corresponding pass/fail results for a
Pass Pass Pass Pass Pass Pass Pass Pass				corresponding pass/fail results for a
Pass Pass Pass Pass Pass				corresponding pass/fail results for a
Pass Pass Pass Pass Pass				corresponding pass/fail results for a
Pass Pass Pass Pass Pass				corresponding pass/fail results for a
Pass Pass Pass Pass Pass				corresponding pass/fail results for a
Pass Pass Pass Pass Pass			_	corresponding pass/fail results for a
Pass Pass Pass Pass Pass				
Pass Pass Pass Pass Pass				
Pass Pass Pass Pass Pass			-	quick giarice
Fass Fass Fass Fass Fass				
705 705				
Pos				
For				
Margin Low Limit				
standbut transfer	High Limit	UNITS	Comments	Detailed results with test name,
	il Contenteres	0107A312	Hits in segments	measured value, pass/fail limits and
HO N.A	.0	1985	No Hits	
	1			pass/fail status. Additional information
f-36		Telcro And in Manager		related to the test appear under Comments section
				Images corresponding to the test. The may contain waveform images, template/mask test images or plots like TIE or Return Loss plots
	Z			

53

Probing in Ethernet Testing

- If the DC Offset introduced by the differential probe is not properly compensated, this error can quickly add up to large numbers when compared with the ±50 mV margin defined by the standards.
- Tektronix differential probes (TDP) have an AutoZero feature which automatically eliminates DC offset errors in the probe signal path.
- It is therefore very important to make the measurements after due signal path compensation on the oscilloscope and probe calibration.
- The interconnect path between the port and the probe should be as short as physically possible.

Ordering Information

- Scope : 5 or 6 Series MSO (>= 1GHz Bandwidth)
- Probe : 1x TDP1500/3500 or P6247/P6248 (2x if you perform Return Loss)
- Software : 5-CMENET/6-CMENET TekExpress Ethernet Compliance Solution
- Fixture : TF-GBE-BTP

57

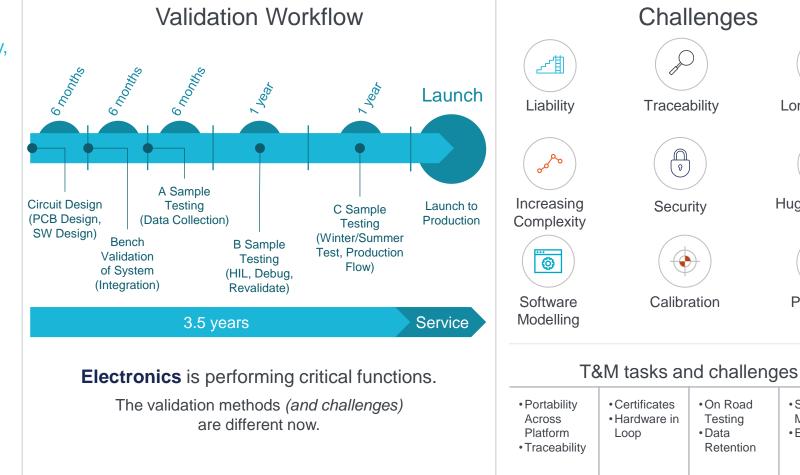
Tektronix

10BASE-T1S

Validation and Compliance

Testing

1 MARCH 2021



Trends Shaping the Car Industry A revolution driven by autonomy, connectivity, electrification, and sharing

A utonomy requires the use of better sensors
 C Connectivity enables new forms of vehicle communication

Electrification requires new powertrain technologies

Shared mobility creates new standards and testing

Ε

S

â

 (\bigcirc)

Long Testing

Cycles

Huge Amounts

of data

f...]

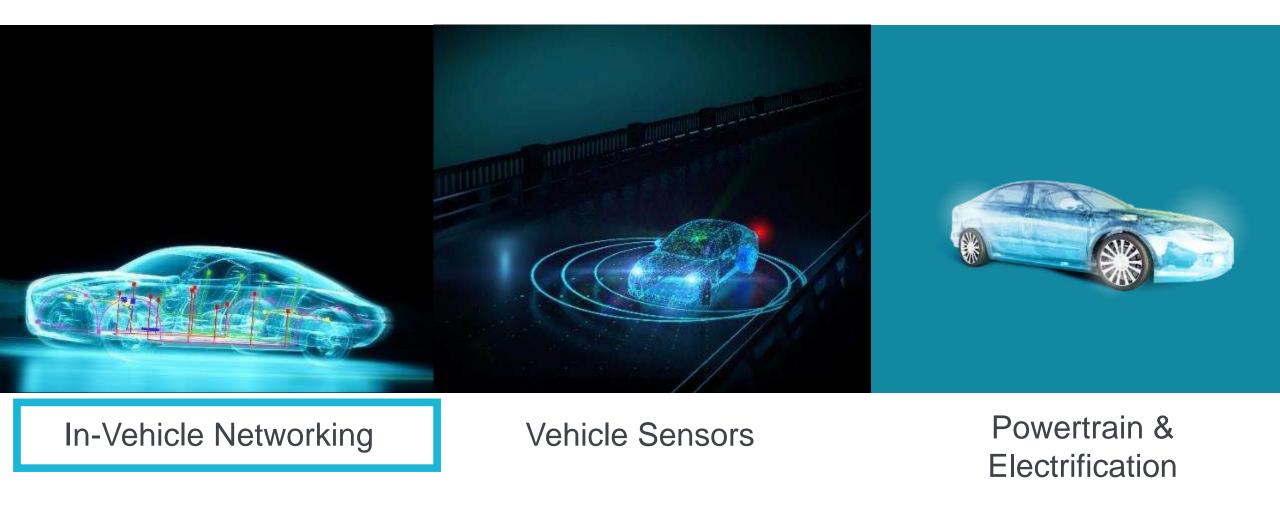

Portability

Software

Modelling

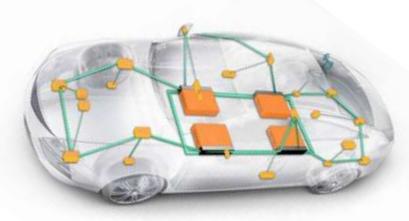
• EMI/EMC

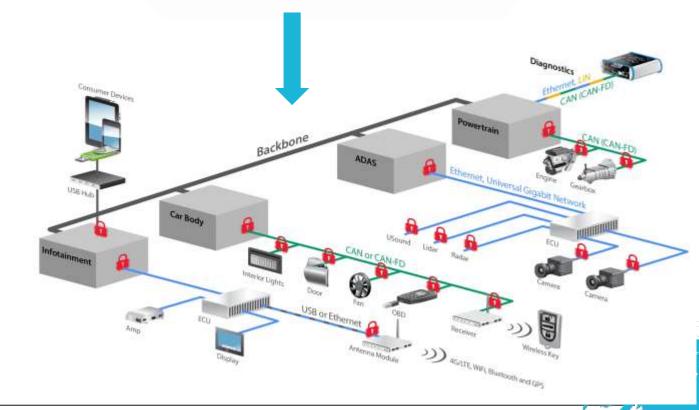
Automotive Focus Areas


In-Vehicle Networking

Vehicle Sensors

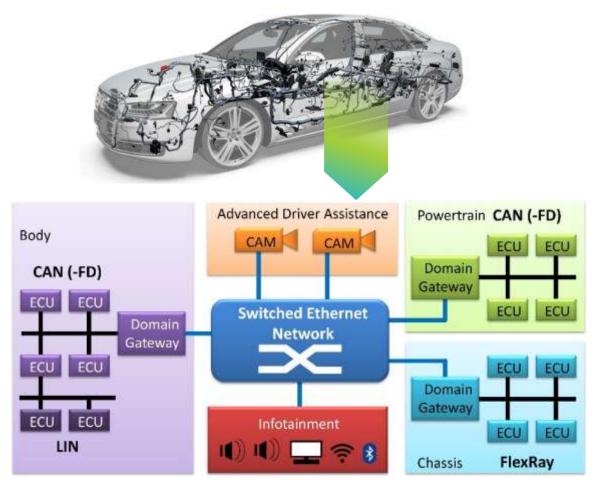
Powertrain & Electrification


Automotive Focus Areas



What is IVN?

- Electronics inside the car communicate with each other over In-Vehicle-Network.
- IVN wiring is the 3rd largest contributors of overall weight of car and 2nd largest contributors of overall BOM
- IVN requirement:
 - Reliable data transfer at Automotive harsh environment
 - EMI/EMC
 - Low weight, low cost, low power



In-Vehicle Networking

DOMAIN ARCHITECTURE

Source: Dr. Kai Richter and Jonas Diemer of Symtavision and Daniel Thiele, Philip Axer and Dr. Rolf Ernst of Technische Universität Braunschweig

In-Vehicle Network standards

Simplistically

CAN – The standard

LIN – Interior Lights / Windows

SENT – Measurements

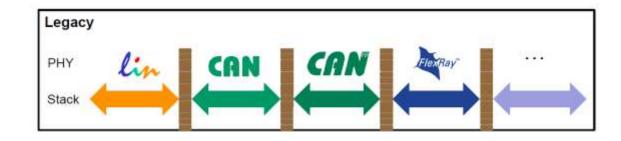
Ethernet – The emerging standard

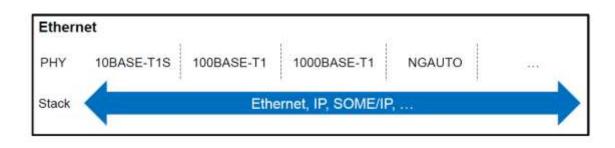
Automotive Electronics Application Technologies							
DATARATE	SAFETY	INFOTAINMENT- TELEMATICS	POWERTRAIN	BODY ELECTRONICS			
Sensor 25-400kbps	DSI3 (airbag) PSI5 (airbag)		SENT				
Low speed Control 20kbps	LIN, CXPI			LIN, CXPI			
Multi-master Control	CAN, CAN-FD, 10BASE-T1S	CAN, CAN-FD, 10BASE-T1S	CAN, CAN-FD	CAN, CAN-FD			
Safety Critical	FlexRay/10BA SE-T1S		FlexRay/10BASE -T1S				
Connectivity >100Mbps	100/1000BAS E-T1, LVDS, NGBASE-T1	100/1000BASE- T1,GVIF, GMSL, HDBaseT, LVDS	100/1000BASE- T1				

90% of communication in car is below 10Mbps

Low speed Applications

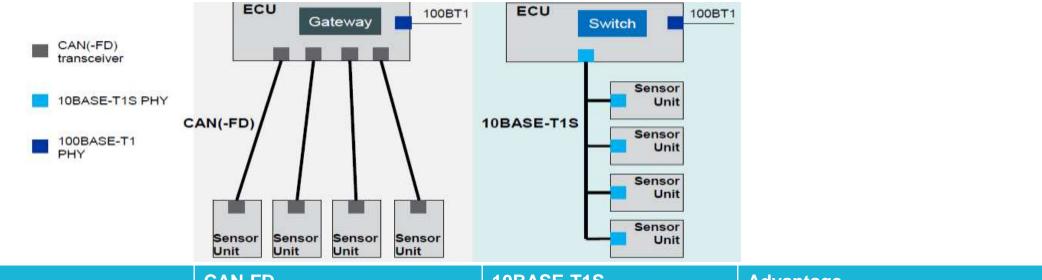
- Hands-free microphones
- Active speakers
- Noise vibration harshness
- Parking ECU
 - Radar
 - Ultrasonic
- Engine ECU
- Body ECU
- Active suspension
- Steering/braking system
- Charging units for electric cars
- Traffic sign recognition

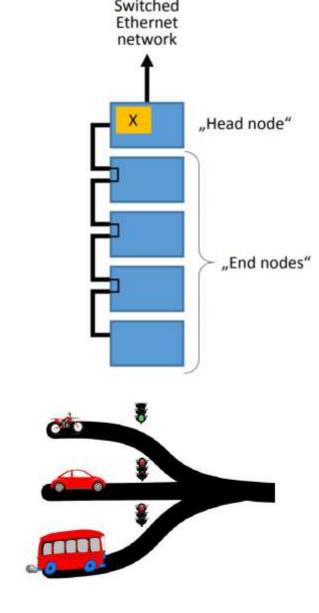



K

Automotive Ethernet Standard

- Standards: 10BASE-T1S (802.3cg), 100BASE-T1 (802.3bw), 1000BASE-T1 (802.3bp) and Multigigabit Ethernet (802.3ch, In progress)
- Common Architecture with multiple speed option
- Unshielded cable, Full-duplex cable reduces cost by 80% and cable weight upto 30%
- Simplified Architecture

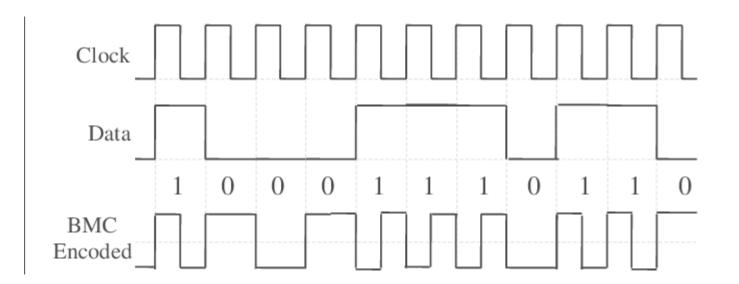

OSI	Automotive Ethernet			
7 Application	Applications (HTTP, FTP,			
6 Presentation	SMTP)			
5 Session				
4 Transport	ТСР			
3 Network	IP			
2 Data Link	Network Access			
1 Physical	10/100/1000/NGBASE-T1			


Why 10Mbps Automotive Ethernet?

	CAN-FD	10BASE-T1S	Advantage
#PHYs	8	5	Fewer PHY required
#connectors @ECU	4	1	Less connector on ECU, less space
#Cable	4	1 Bus line	Less cabling, Extendibility, Scalability
Bandwidth	4 * 2Mbps	10Mbps	More bandwidth
Ethernet based network	No	Yes	Seamless integration into overall Ethernet system
Gateway	Yes	No	Eliminate need to translate message

10BASE-T1S overview

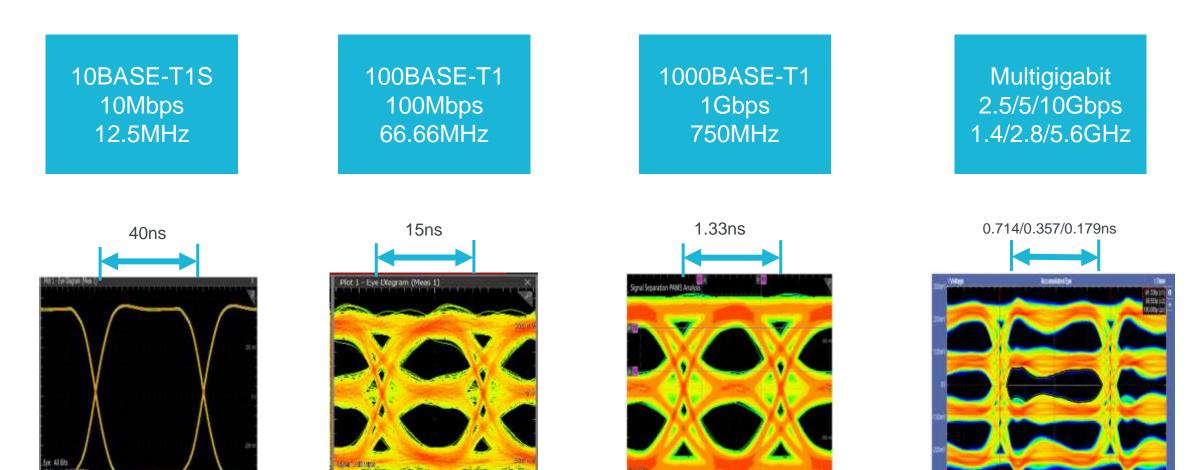
- IEEE 802.3cg specification
- Single pair cables, Multidrop bus topology or Point to Point
 - At least 8 nodes, 25m, 24 AWG cable
- Designed to meet Automotive EMC/EMI requirement
 - BER < 10^-10
- Physical Layer collision avoidance (PLCA)
 - CSMA/CD enhancement that dynamically creates transmit opportunities
 - Adaptive: bounded latencies, efficient BW allocation, fair
- Optional Power over Data line (PoDL) support



10BASE-T1S overview

	10BASE-T1S	100BASE-T1	1000BASE-T1	NGBASE-T1
Datarate	10Mbps	100Mbps	1Gbps	2.5/5/10Gbps
Symbol rate	12.5MHz	66.66MHz	750MHz	1.4/2.8/5.6 GHz
Line coding	4B/5B, Differential Manchester Encoding	PAM3	PAM3	PAM4
Voltage	1Vpp	2.2Vpp	1.3Vpp	1.3Vpp
Communication	Half Duplex	Full Duplex	Full Duplex	Full Duplex
Configuration	Point to Point Multidrop	Point to Point	Point to Point	Point to Point
Cable length	15m/25m	15m	15m	15m

10BASE-T1S Encoding


• 4B/5B, Differential Manchester Encoding

Automotive Ethernet standards

06008 Tetal: 2000/2608

K

A LEADER AND TRAFFIC

71

1216 (35)

Automotive Ethernet summary

	10BASE-T1S	100BASE-T1	1000BASE-T1	Multigigabit
Datarate	10Mbps	100Mbps	1Gbps	2.5/5/10Gbps
Symbol rate	12.5MHz	66.66MHz	750MHz	1.4/2.8/5.6 GHz
Line coding	4B/5B, Differential Manchester Encoding (DME)	PAM3	PAM3	PAM4
Voltage	1Vpp	2.2Vpp	1.3Vpp	1.3Vpp
Communication	Half Duplex or Full Duplex	Full Duplex	Full Duplex	Full Duplex
Configuration	Point to Point <mark>Multidrop</mark>	Point to Point	Point to Point	Point to Point
Cable length	15m/25m	15m	15m	15m
Cable Type	24-26 AWG	<mark>Unshielded twisted</mark> pair	<mark>Unshielded twisted</mark> pair	Shielded twisted pair
Application	Audio, Parking ECU, Engine ECU, Body ECU, Active suspension, Steering/braking system, Charging units for electric cars	Infotainment, Driver Assistance systems	Infotainment, Driver Assistance systems	Infotainment, Driver Assistance systems, ECU to ECU communication 72

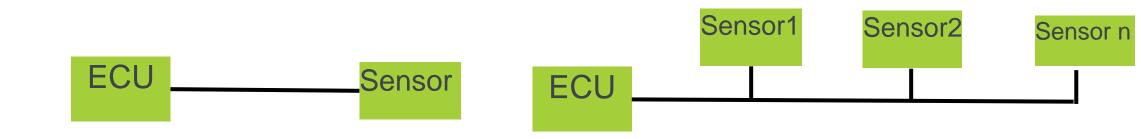
Automotive Ethernet Test Requirement

Automotive Ethernet Compliance

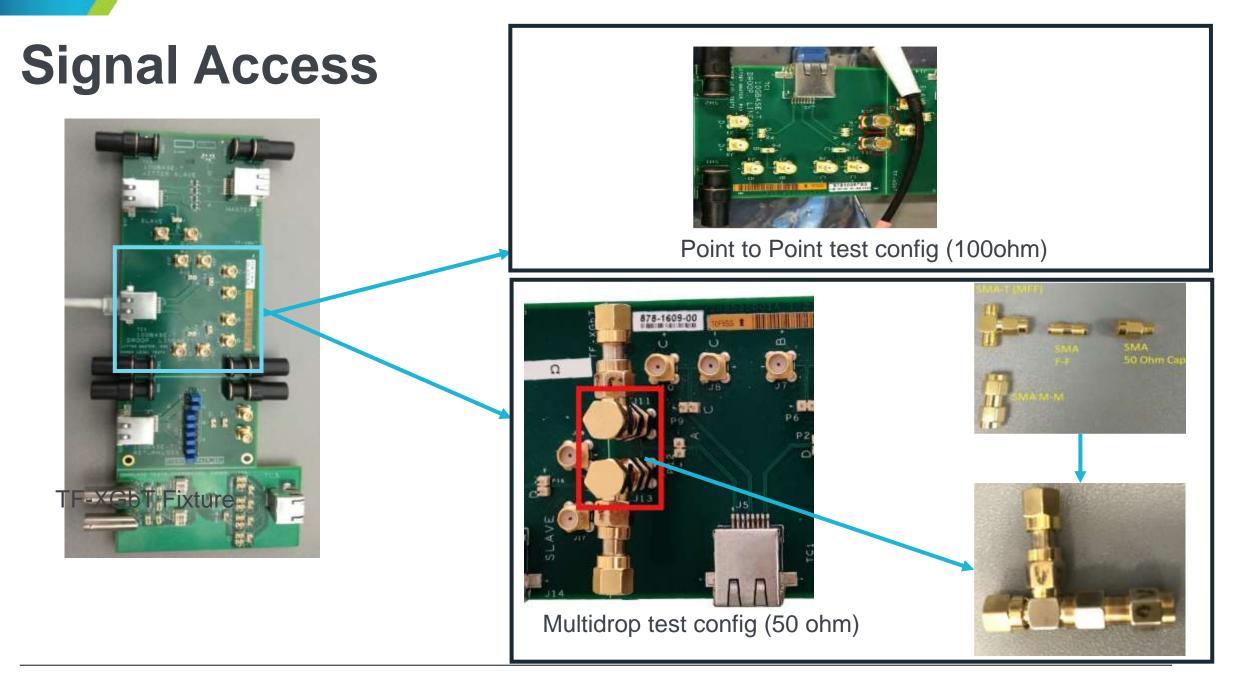
	100BASE-T1 PHY and Protocol IEEE 802.3bw	1000BASE-T1 PHY and Protocol IEEE 802.3bp	10BASE-T1S PHY and Protocol IEEE 802.3cg	NGBASE-T1 PHY and Protocol IEEE 802.3ch (In Progress)
DER Ance	Open Alliance TC1	Open Alliance TC12	Open Alliance: In Progress	Open Alliance: In Progress
		TC8 ECU S	pecification	

Automotive Ethernet compliance

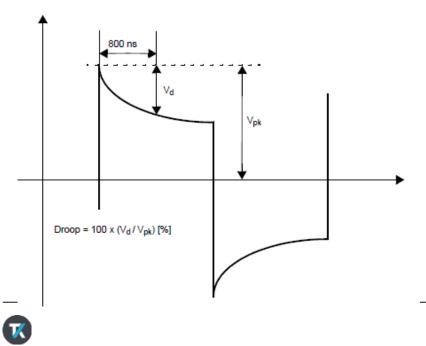
Test Name	10BASE-T1S*	100BASE-T1*	1000BASE-T1*
Transmitter output Droop	147.5.4.2	96.5.4.1	97.5.3.1
Transmitter distortion	NA	96.5.4.2	97.5.3.2
Transmitter Timing Jitter (Master/Slave)	147.5.4.3	96.5.4.3/ 96.5.4.5	97.5.3.3
Transmitter Power Spectral Density (PSD)	147.5.4.4	96.5.4.4	97.5.3.4
Transmitter Clock Frequency	NA	96.5.4.5	97.5.3.6
Transmitter Peak Differential Output	147.5.4.1	96.5.6	97.5.3.5
MDI Return Loss	146.8.3	96.8.2.1	97.7.2.1
Transmitter MDI Timing Jitter	NA	NA	97.5.3.3
MDI Mode conversion Measurement	Not defined		
Common Mode Emission Test	Not defined		

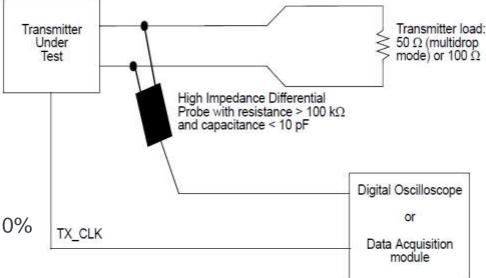

10BASE-T1S PMA Test Specification

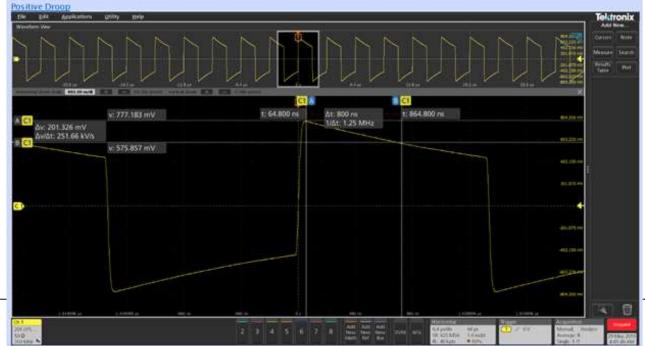
- PHY Media Attachment Compliance Test
- PHY test mode configuration should be provided by PHY vendor
- Transceiver PHY electrical test requirements include:
 - Maximum Output Droop
 - Timing Jitter
 - Power Spectral Density
 - Clock Frequency
 - Peak Differential Output
 - MDI Return Loss
- Operating mode: Point to Point or Multidrop


Test Name	Test Mode
Transmitter Output Droop	2
Transmitter Timing Jitter	1
Transmitter Power Spectral Density (PSD)	3
Transmitter Clock Frequency	1
Peak Differential Output	1
MDI Return Loss	4

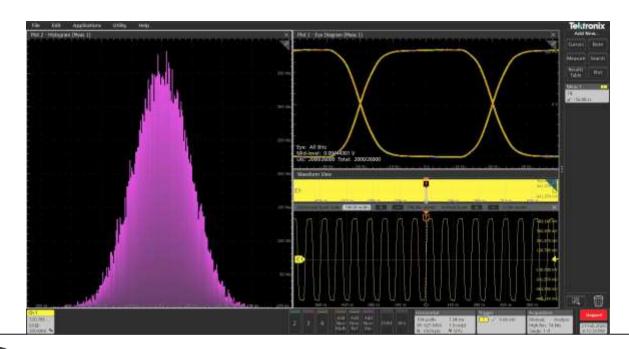
Mode of operation

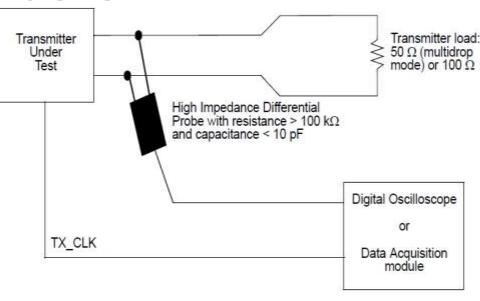



	Point to Point	Multidrop
Node	1 node	Upto 8 node, with 25cm stub
Cable length	15m reach	25m reach
Transmission load	100 ohm	50 ohm


Maximum Droop Test

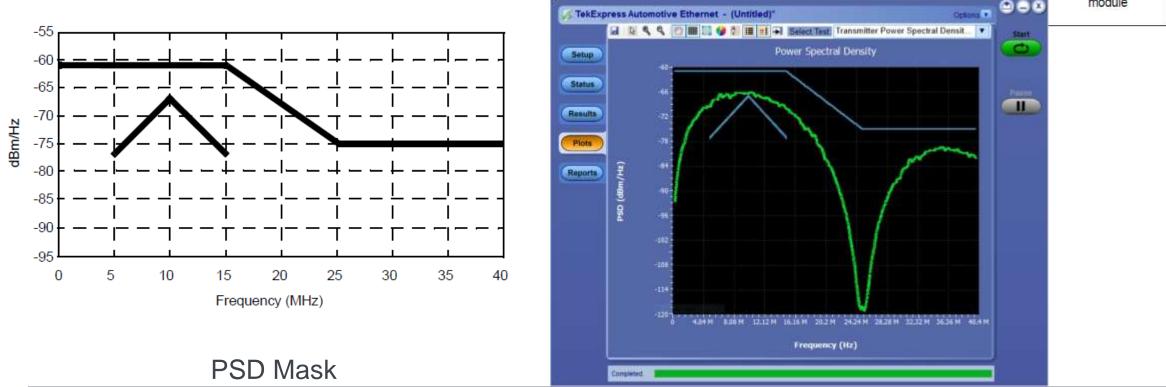
- Droop Measurement
 - Configure Test Mode 2
 - Transmit fifteen {+1} symbols followed by fifteen {-1} symbols continually
 - Value of 10 bit time pulse after initial peak, shall be less than 30.0%
 - Calculate Vpk and Vdelay as shown below
 - Vd= Vpk-Vdelay
 - Droop= 100 x (Vd/Vpk)%

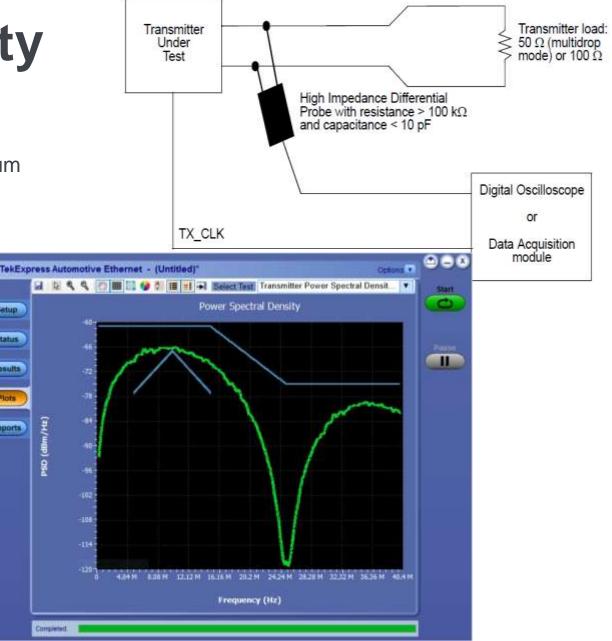



Droop

Clock Frequency and Jitter Tests

- Clock Frequency Measurement
 - Configure Test Mode 1
 - This is informative test
- Timing Jitter Measurement
 - Transmitter clock measurement
 - PHY output jitter shall be less than 5 ns (symbol to symbol)

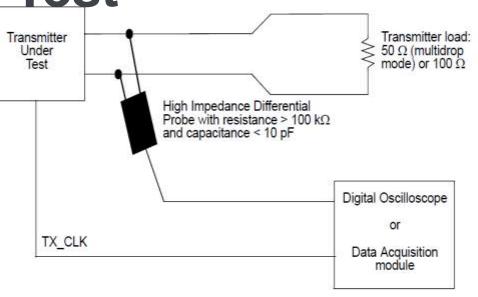




Clock Frequency & Jitter

Power Spectral Density

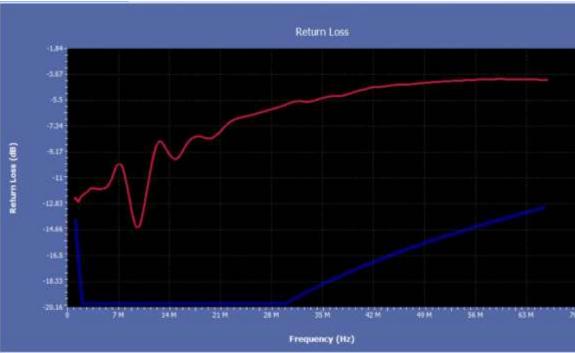
- Power Spectral Density
 - Configure Test Mode 3
 - Compliance test spec allows use of scope or spectrum 0 analyzer

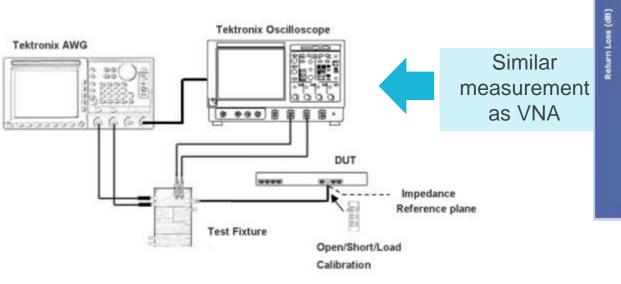


Tx Peak Differential Output Test

- Peak Differential Output Test
 - Configure device in Test mode 1
 - Peak-to-peak differential amplitude shall be 1 Vpk-pk ± 20 %

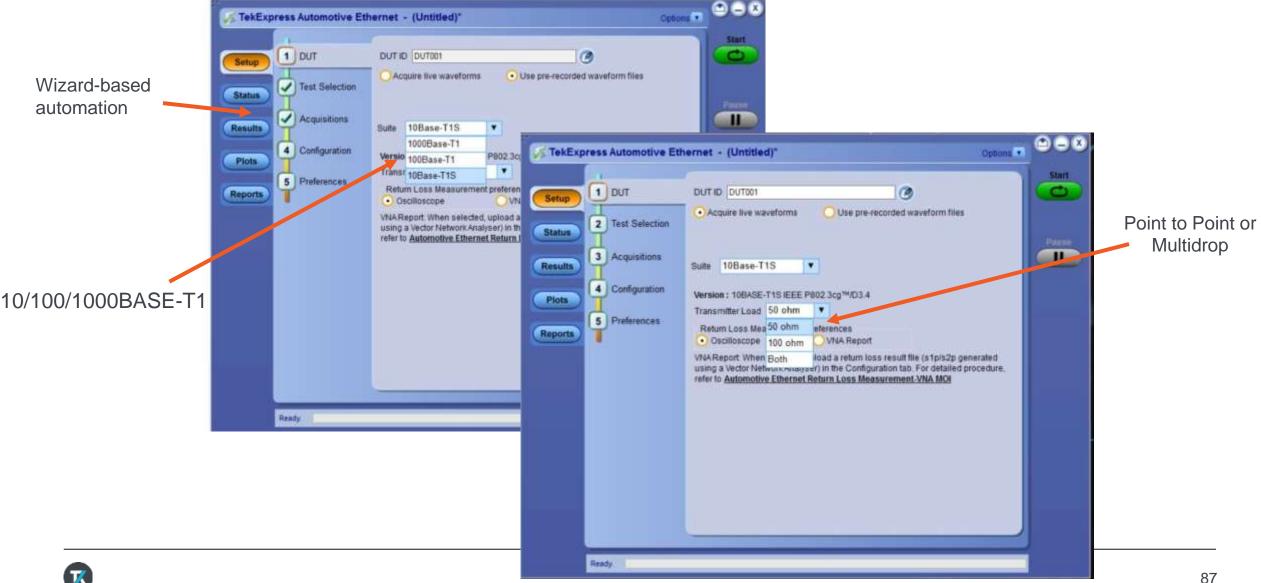
Differential Output

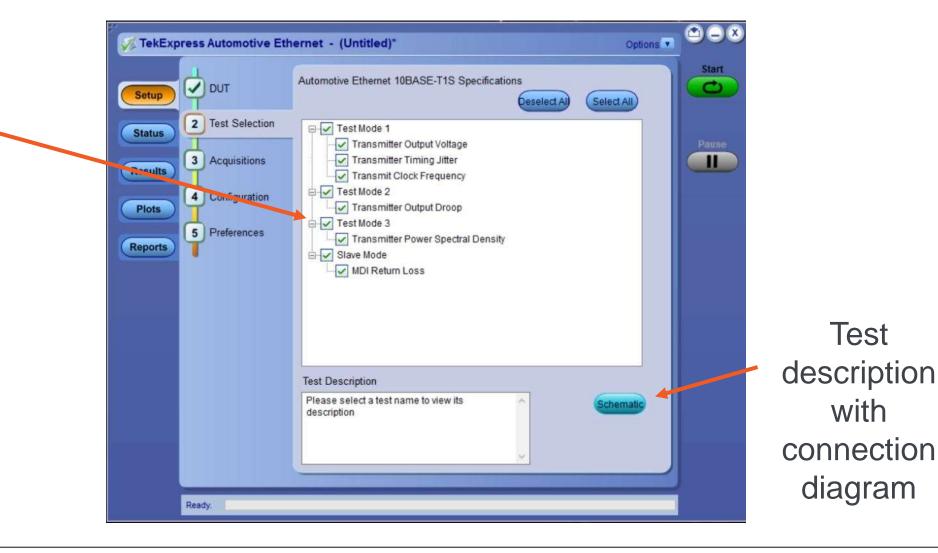




MDI (connector) Return Loss Test

- Return Loss Measurement
 - Measurement is focused on the connector and not the link (cable) return loss
 - Tektronix Patented approach of Scope based Return loss measurement reduces cost of testing
 - Correlated measurement with VNA


Return Loss using scope


10BASE-T1S Test solution

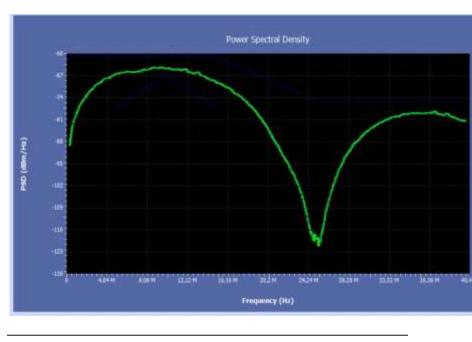
Automated Compliance

Test Selection

Select multiple tests

Automated Report Generation

Test Name Summary Table Transmitter Output Droop


TekExpress Automotive Ethernet Transmitter Test Report							
Setup Information DUT ID	DUT001	TekExpress Automotive-Ethernet	1.3.0.95				
Date/Time	2020-01-28 12:59:09	Framework Version	4.15.0.2				
Pre-Recorded Mode	False	Scope Model	MSO54				
Compliance Mode	True	Firmware Version	1.14.13.6144				
Suite Name	10Base-T15	Probel Model	TDP1500				
Overall Execution Time	0:00:31	Probe1 Serial Number	Q100012				
Overall Test Result	Pass	Probe2 Model					
Probe2 Serial Number N.A							
DUT COMMENT: General Com	DUT COMMENT: General Comment - Automotive Ethernet DUT						

Report with Pass/Fail, Margin and Plots

Statistics								
Measurement Details	Run Count	Min	Мах	Average	Units	Standard Deviation		
Positive Output Droo p_50ohm	5	3.245	3.47	8.8828	%	0.0984		
Negative Output Dro op_50ohm	5	3.219	3.809	3.6254	%	0.2297		

Pass

Transmitter Outpu	t Droop						
Measurement Details	Test Result	Low Limit	Measured Value	High Limit	Units	Margin	Run#
Positive Output D roop_50ohm	Pass	NA	8.457	30	%	LL: N.A, HL: 26.54 8	1
Negative Output Droop_50ohm	Pass	NA	8.52	30	%	LL: N.A, HL: 26.48	1
Positive Output D roop_50ohm	Pass	NA	3.446	30	%	LL: N.A, HL: 26.55 4	2
Negative Output Droop_50ohm	Pass	NA	8.809	30	%	LL: N.A, HL: 26.19 1	2
Positive Output D roop_50ohm	Pass	NA	8.245	30	%	LL: N.A, HL: 26.75 5	8
Negative Output Droop_50ohm	Pass	NA	8.219	30	%	LL: N.A, HL: 26.78 1	8
Positive Output D roop_50ohm	Pass	NA	3.47	30	%	LL: N.A, HL: 26.53	4
Negative Output Droop_50ohm	Pass	NA	3.792	30	%	LL: N.A, HL: 26.20 8	4
Positive Output D roop_50ohm	Pass	NA	3.296	30	%	LL: N.A, HL: 26.70 4	5
Negative Output Droop_50ohm	Pass	NA	3.787	30	%	LL: N.A, HL: 26.21 3	5
Signal Validation : Pass. Signal Validation passed COMMENTS For run 5: 50ohm mode : Positive droop :Max value = 3.64%, Min value = 2.92%, Count = 19 50ohm mode : Negative droop :Max value = 4.15%, Min value = 3.55%, Count = 18							

Hardware Platform

THE MOST FLEXIBLE AND CAPABLE SCOPE FOR AUTOMOTIVE APPLICATIONS

5 Series MSO	MSO54	MSO56	MSO58	MSO64
Bandwidth	350 MHz,	500 MHz, ⁻ GHz	1 GHz, 2	1GHz- 8GHz
Maximum Analog Channels	4	6	8	4
Maximum Digital Channels (optional in 8 channel increments)	32	48	64	32
Sample Rate (all A&D ch.)		6.25 GS/s		25GS/s
Standard Record Length (all A&D ch.)		62.5	М	
Max. Opt. Record Length (all A&D ch.)		125	Μ	
Waveform Capture Rate		500,000	wfms/s	
ADC Resolution		12 b	its	
Vertical Resolution	12 bi	ts at 6.25 G ts at 3.125 (6 bits w/ Hig	GS/s	
Arbitrary/Function Generator	Up to	o 50 MHz (c	opt.)	
Integrated DVM & Trigger Freq. Counter	Free with	product reg	gistration	
Price Range	\$12	,600 – \$40,6	600	

Oscilloscope Logic Analyzer Arbitrary/Function Generator Protocol Analyzer DVM Trigger Frequency Counter

10BASE-T1S Compliance Solution

- Oscilloscope: MSO 5/6 Series
 - 350 MHz minimum bandwidth
- Software:
 - 5/6-CMAUTOEN10: 10BASE-T1S compliance
 - Optional Advanced jitter software
- Probes: TDP1500 (2 required)
- Signal source: AFG31052
- Fixtures: TF-XGbT Ethernet test board
- Accessories: As per Datasheet

- Reliability Test: Design Engineers can perform System level Signal Integrity test with different scenarios to uncover final integration issues.
- Most accurate Protocol decode solution for Automotive Ethernet
- Compliance Test: coverage of all Ethernet variants as per Open Alliance TC8 and Component test specification
- Component to System level test for In-Vehicle Network standards

Automotive Ethernet Solution

- Oscilloscope: MSO 5 Series, DPO70KC
 - 350MHz minimum bandwidth (10BASE-T1S)
 - 1 GHz minimum bandwidth (100BASET1)
 - 2GHz Minimum bandwidth (1000BASET1)
- Compliance Software:
 - 5/6-CMAUTOEN10 10BASE-T1S compliance
 - 5/6-CMAUTOEN: 1000BASE-T1/100BASE-T1 compliance
- Signal Integrity Test with Signal Separation:
 - 5/6-AUTOEN-SS: 100/1000BASE-T1 Automotive Ethernet Signal Separation
 - 5/6-PAM3: PAM3 Signal Analysis (Prerequisite:5/6-DJA)
- Protocol Decode:
 - 5/6-SRAUTOEN1: 100BASE-T1 Protocol decode
- Probes: TDP1500- 10BASE-T1S/100BASET1

TDP3500 - 1000BASET1

- Signal source: AFG310000series
- Network Analyzer: TTR503/506
- Fixtures: TF-XGbT Ethernet test board
 TF-BRR-CFD Clock divider

Automotive IVN solution

Standard	Tek solution	Platform
CAN/CAN-FD	Protocol decode	MSO4/5/6, MDO3, DPO70K*
LIN	Protocol decode	MSO4/5/6, MDO3, DPO70K*
FlexRay	Protocol decode	MSO4/5/6, MDO3, DPO70K*
SENT	Protocol decode	MSO4/5/6
PSI5	Protocol decode	MSO4/5/6
10BASE-T1S	Compliance	MSO5/6
100BASE-T1	Compliance, Protocol decode	MSO5/6, DPO70K*
1000BASE-T1	Compliance	MSO5/6, DPO70K*
100/1000BASE-T1	Signal Integrity Analysis	MSO5/6
LVDS	Transmitter Test	MSO5/6, DPO70K*

TEKTRONIX CONFIDENTIAL *Product feature may defer on different platform ⁹⁴

Tektronix

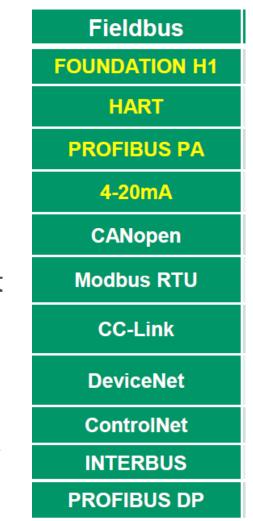
Thank you!

Tektronix

10BASE-T1L

Validation and Compliance

Testing


1 MARCH 2021

Industry standards for 10Mbps

- Existing 10Mbps standards
 - Industrial: HART Modem, RS232, RS485, Ethernet, Canopen
 - Proprietary standards, require separate line for Power, Simplex communication
 - Fieldbuses/other non-ethernet standards still require completing communication to edge which need complex bridge/switch
 - Challenges with combined reach & rate, special environments, cost of operation.

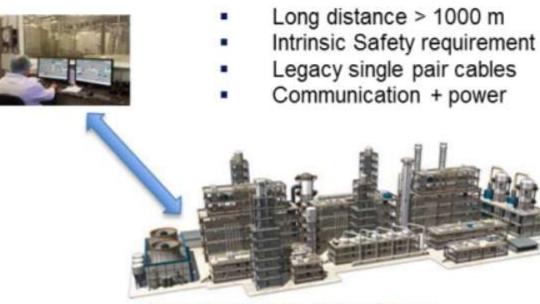
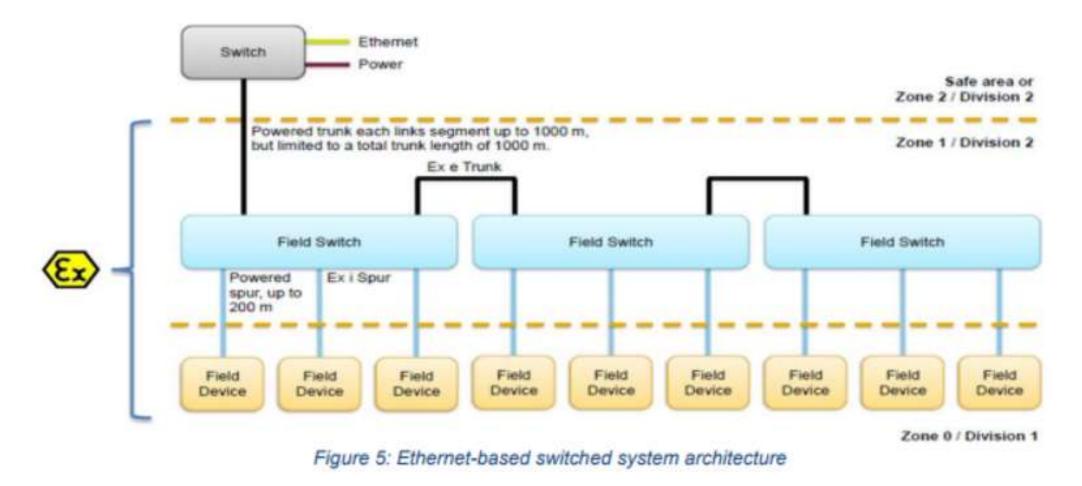
10BASE-T1L

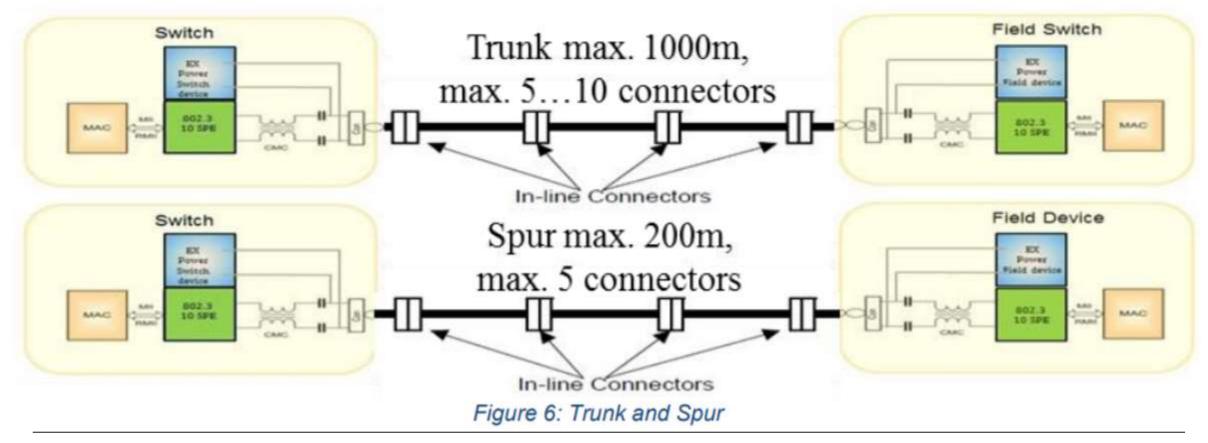
 Target Segments:- Industrial networks, Intelligent building networks, HVAC, security/access, lighting, IoT, control and actuator based devices and systems

picaaulca.

- Zone 0: Area in which an explosive gas-air mixture is continuously present or present for long periods.
- Zone 1: Combustible or conductive dusts are present. Area in which an explosive gas-air mixture is likely to occur for short periods in normal operation.
- Zone 2: Area in which an explosive gas-air mixture is not likely to occur, and if it occurs it will only exist for a very short time due to an abnormal condition.

Different protection methods are applied in the zones. The intrinsic safety method (Ex i) strictly limits energy by appropriate protective circuit design in order to avoid any explosion in case of faults. Ex i is the preferred method in Zone 0. The increased safety method (Ex e) is less restrictive for powering devices and appropriate for Zone 1.


Figure 4: Example Process Automation plant

With a migration to Ethernet, a switched architecture (Figure 5) will be adopted. This is a transition from the homerun wiring of 4-20mA and from the multi-drop topology of the fieldbuses. Upgrades in the marshalling cabinets (Zone 2, near the control room), the field junction boxes (Zone 1), and the field devices (Zone 0) give access to cable ends for a simplified transition.

In order to reduce installation costs and cabling effort, the connection to the field is realized by a *Trunk* and *Spurs* as depicted in both Figure 5 and Figure 6. The Trunk and Spur provide sufficient bandwidth for

the communication into the field and provide the field devices with power. Ideally, the Trunk and Spur utilize single twisted pair shielded cable as described by IEC 61158-2 type A cable.

10SPE emerges to fill Ethernet edge gaps

- In July 2016, the IEEE 802.3 authorized the "10 Mb/s Single Twisted Pair Ethernet Study Group" (informally known as "10SPE"), kicking off the development of a set of Ethernet enhancements aimed at closing the gaps for Ethernet edge devices.
- Participating industries included: Industrial Automation, Automotive, Building Automation and Lighting.
- Both are satisfied by a 10 Mb/s rate. The target application are not currently very demanding. Process Automation migrates from 31.25 kb/s. Future upgrade of rate is anticipated by the optional AutoNegotiation objective.

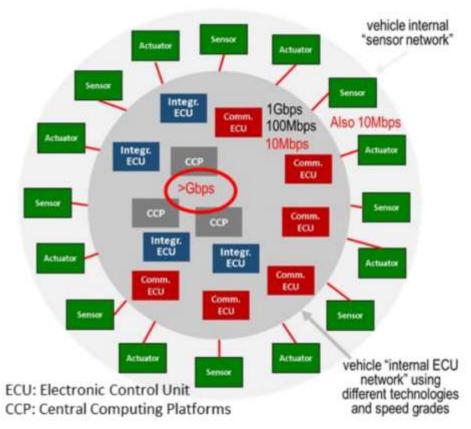
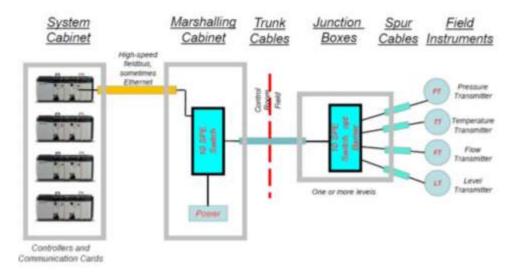
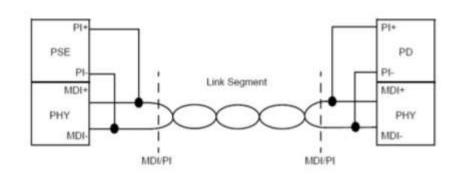


Figure 7: Automotive Ethernet architecture concept

SPE Standards


- Draft standard: IEEE P802.3ch Multi-Gig Automotive Ethernet PHY Task Force
 - 2.5GBASE-T1 2.5 Gb/s operation over link segment supporting up to four in-line connectors using a single shielded balanced pair of conductors for up to at least 15 m
 - 5GBASE-T1 5 Gb/s operation over link segment supporting up to four in-line connectors using a single shielded balanced pair of conductors for up to at least 15 m
 - 10GBASE-T1 10 Gb/s operation link over segment supporting up to four in-line connectors using a single shielded balanced pair of conductors for up to at least 15 m
- Draft standard: IEEE P802.3cg 10 Mb/s Single Pair Ethernet Task
 - 10BASE-T1S 10 Mb/s operation over a short reach single balanced twisted-pair link segment supporting up to ten in-line connectors for up to at least 15 m.
 - 10BASE-T1L 10 Mb/s operation over a long reach single balanced twisted-pair link segment supporting up to ten in-line connectors for up to at least 1000 m.

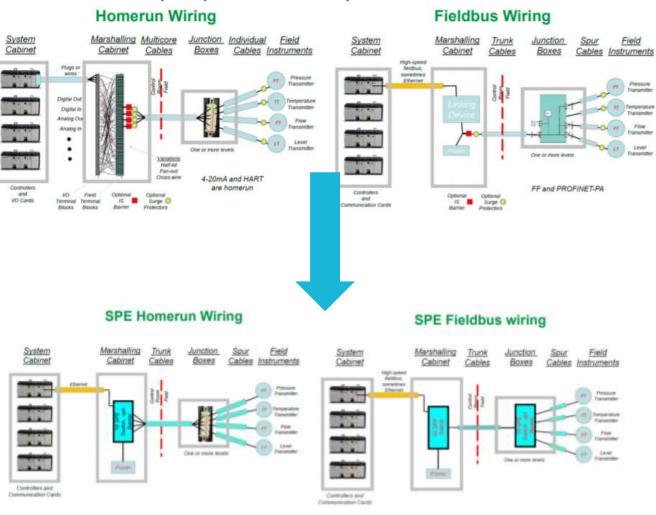
2018 BICSI Fall Conference & Exhibition


Why 10BASE-T1L?

- Standardization: IEEE 802.3cg Open standard
- Based on well-proven Ethernet technology but customized for additional Industrial needs
- Co-exists with existing Ethernet networks
- PAM3 Modulation, Long reach (upto 1KM)
- Single pair, Full-Duplex communication
- Power Over Data Line (PoDL): optional Type E PoDL remote power provisioning.
- Four classes of Type E power sourcing equipment (PSE), support up to a minimum of 13.6W over up to 1 km of single balanced pair point-to-point cabling

SPE Fieldbus wiring

Ethernet and 10BASE-T1L

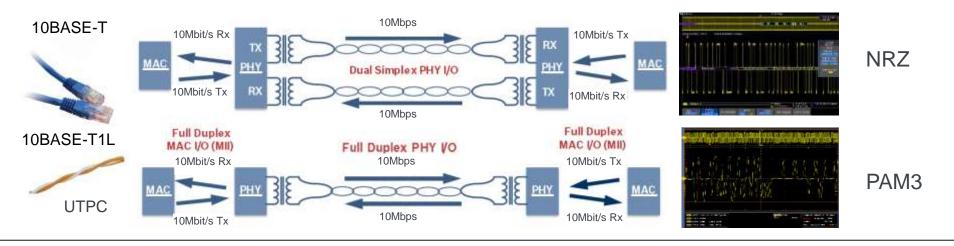


PoDL

10BASE-T1L Architecture

- Multi-drop: Multi-drop link segments (that form tree structures) will be replaced by multi-port switches that break the multi-drop into multiple shorter point-point link segments
- Marshalling cross-connections: 10 SPE will extend the fieldbus trend of replacing marshalling wiring complexity with switches and end node addressing

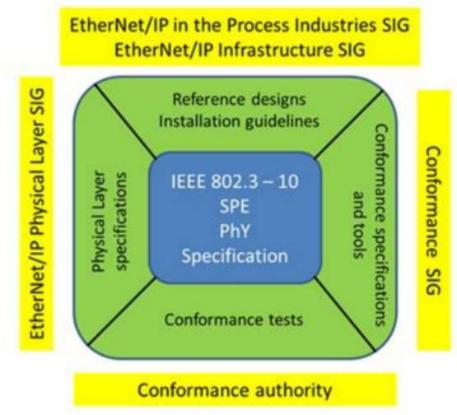
https://automationforum.co/what-ismarshalling-cabinet-or-marshalling-panel/



Ethernet v/s 10BASE-T1L Standard

BASED ON ESTABLISHED ETHERNET STANDARDS, ADAPTED FOR AUTOMOTIVE

Standard	10BASE-T	10BASE-T1
Speed	10Mbps	10Mbps
Modulation	NRZ	PAM3
Symbol rate	10MBd	7.5Mbd
Power over Ethernet	optional, PoE	Optional PoDL
Architecture	Point to Point, two pair, Simplex	Point to point, single pair, Full Duplex
Operating voltage	+2.5V or -2.5V	1V or 2.4V
Range	100m	1000m

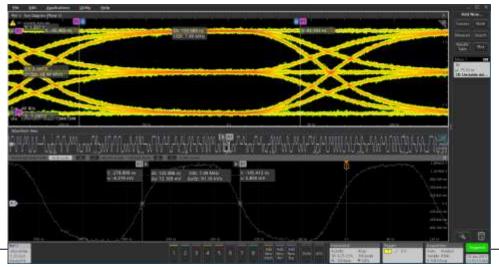


NAMUR and ODVA

TARGET CUSTOMERS: SILICON COMPANIES: ANALOG DEVICES. LINERTECH, RENESAS, MARVELL, MICROCHIP

INDUSTRIAL SYSTEM COMPANIES: SIEMENS, CISCO, ROCKWELL, JOHNSON CONTROL, HIRSCHMAMN, TURCK, PHOENIX, SCHNEIDER, EMERSON, ABB, PEPPERL, HUAWEI ETC

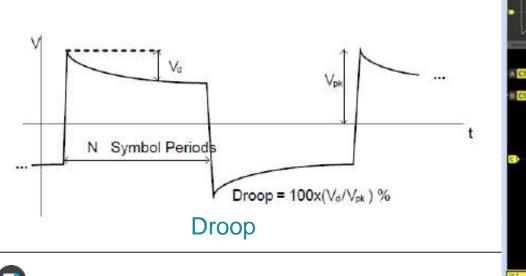
- NAMUR is an international user association of automation technology in process industries. We have been representing the interests of our members for more than 65 years. NAMUR currently numbers 162 member companies, 8 for <u>China</u>
- Founded in 1995, ODVA is a global association whose members comprise the world's leading automation companies. ODVA's mission is to advance open, interoperable information and communication technologies in industrial automation


10BASE-T1L Compliance

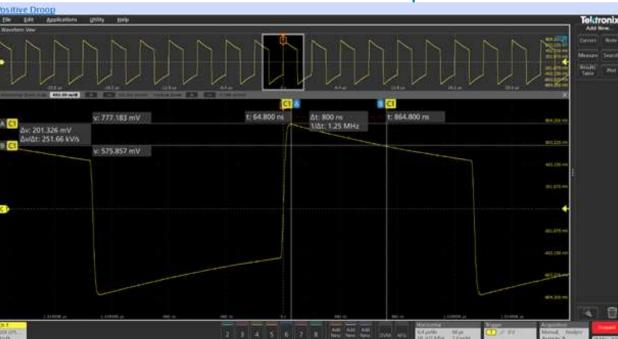
Ensuring performance and interoperability

10BASE-T1L PMA Test Specification

- PHY Media Attachment Compliance Test
- PHY test mode configuration should be provided by PHY vendor
- Transceiver PHY electrical test requirements include:
 - Maximum Output Droop
 - Timing Jitter
 - Power Spectral Density
 - Clock Frequency
 - MDI Return Loss
 - Peak Differential Output
- Operating mode: 1V and 2.4V
- PAM3 signaling

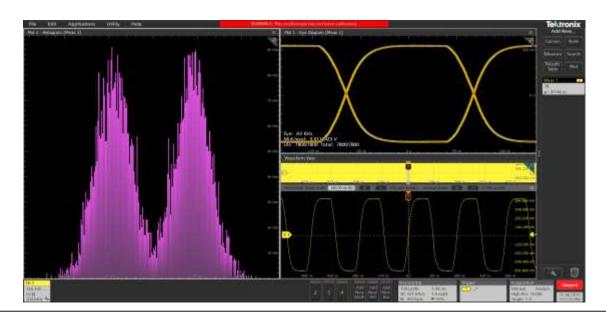

Test Name	Test Mode
Transmitter Output Droop	2
Transmitter Timing Jitter	1
Transmitter Power Spectral Density (PSD)	3
Transmitter Clock Frequency	1
Peak Differential Output	1
MDI Return Loss	slave

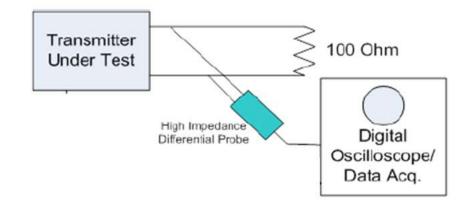




Maximum Droop Test

- Droop Measurement
 - Configure Test Mode 2
 - Transmit fifteen {+1} symbols followed by fifteen {-1} symbols continually
 - Value of 10 bit time pulse after initial peak, shall be less than 20.0%
 - Calculate Vpk and Vdelay as shown below
 - Vd= Vpk-Vdelay
 - Droop= vd/vpk%

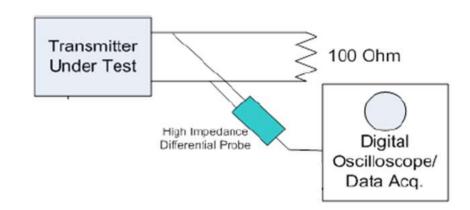




Droop

Clock Frequency and Jitter Tests

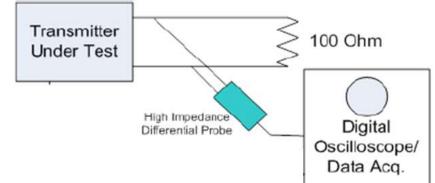
- Clock Frequency Measurement
 - Configure Test Mode 1
 - PHY device must have a symbol transmission rate of 7.5 MBd ± 50ppm
- Timing Jitter Measurement
 - Transmitter clock measurement
 - PHY output jitter shall be less than 10 ns



Clock Frequency & Jitter

Power Spectral Density

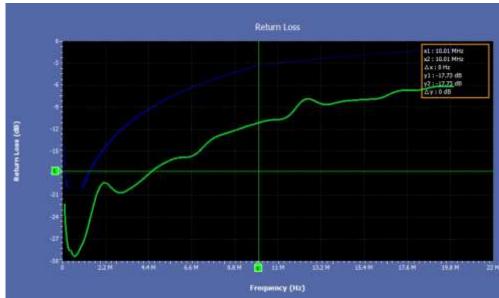
- Power Spectral Density
 - Configure Test Mode 3
 - Random sequence of ternary (PAM3) codes {-1, 0, +1}
 - Compliance test spec allows use of scope or spectrum analyzer
 - Power level:
 - 1.2 ± 1.0 dBm at 1Vpp operating condition
 - 8.8 ± 1.0 dBm at 2.4Vpp operating condition

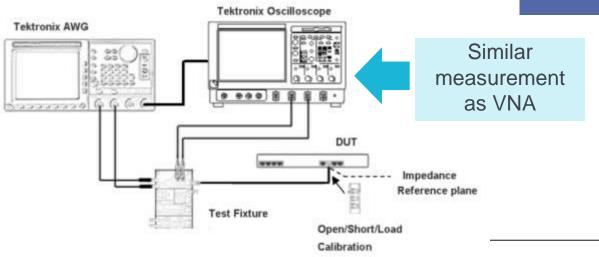

Power Spectral Density

0

Tx Peak Differential Output Test

- Peak Differential Output Test
 - Configure device in Test mode 1
 - Peak-to-peak differential amplitude shall be 2.4 V ± 5 % peak-to-peak at 2.4Vpp operating voltage and 1 V ± 5 % peak-to-peak at 1Vpp operating voltage

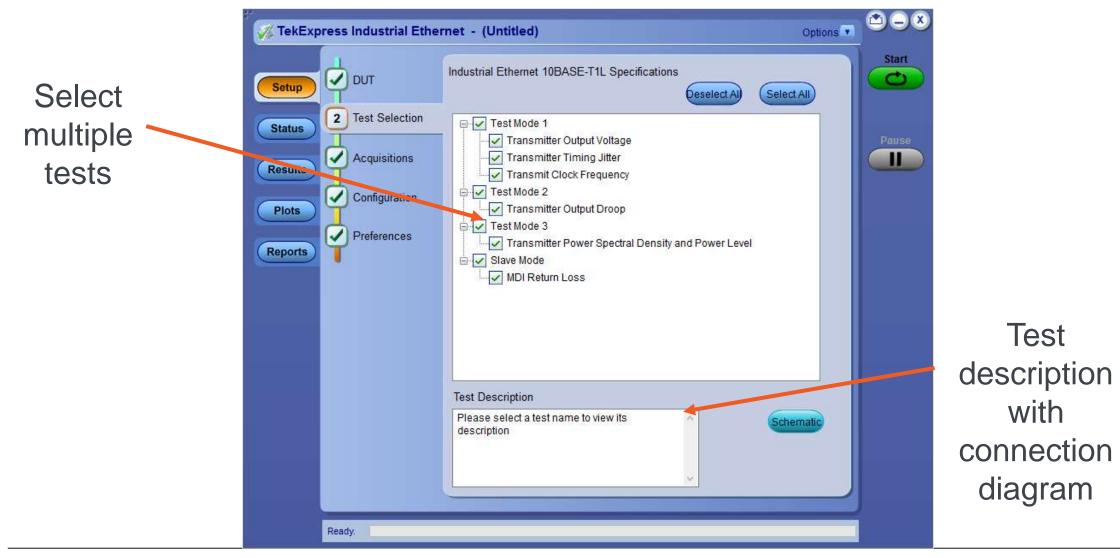

Differential Output



MDI (connector) Return Loss Test

- Return Loss Measurement
 - Measurement is focused on the connector and not the link (cable) return loss
 - Test spec references VNA or scope as measurement tool
 - Return loss measured at the MDI shall be at least 20-18*log10(0.2/e) dB (0.1 to 0.2MHz) 20dB (0.2 to 1MHz) 20-16.7*log10(f) dB (1 to 10 MHz) 3.3-7.6*log10(f/10) dB (10 to 20 MHz)
 - Tek has patented approach using scope and AWG (same equipment used for other tests)

Return Loss using scope



Automated Compliance

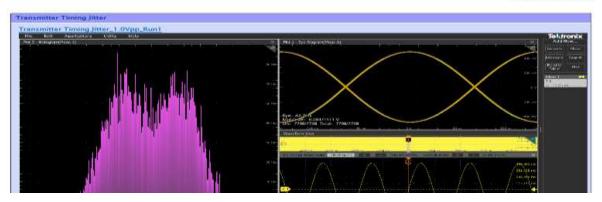
	TekExpress Industrial Et	hernet - (Untitled)"	Options 🔹 🗢 🗆 🔍	
Wizard-	Setup 1 DUT		Start	
based	Test Selection	Acquire live waveforms OUse pre-recorded waveform fi	les	
automation	Status Results 4 Configuration	Suite 10Base-T1L	Pause	
	Plots 5 Preferences	Version: 10Base-T1L IEEE P802.3cg™/D3.0 Operating Mode Both		Latest 10BASE-T1
	Reports	Operating Mode Both		support
	Ready			

Test Selection

Automated Report Generation

Te	kti	ro	ni	×

TekExpress Industrial Ethernet Transmitter Test Report

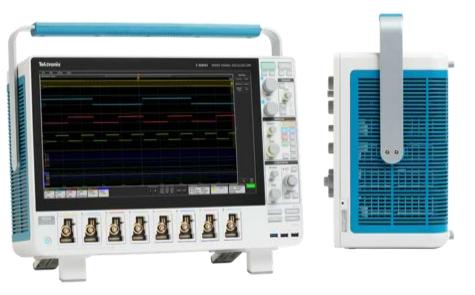

Setup Information					
DUT ID		DUT001	DUT001 TekExpress Industrial Ethernet		
Date/Time		2019-07-29 10:85:11	Framework Version	4.10.0.85	
Pre-Recorded Mode		False	Scope Model		
Compliance Mode		True	Firmware Version	1.20.0.6776	
Suite Name		10Base-T1L	Probe1 Model	TCA-SMA	
Overall Execution Time		0:00:22	Probe1 Serial Number	N.A.	
Overall Test Result Pass		Pars		T MARKED	
DUT COMMENT:	General Comment - Industrial Ethernet OUT				

Report with Pass/Fail, Margin and Plots

	Text Name Summary Table	
	Transmitter Timing Jitter	Pass
ų,		
9		

Statistics	ratistics -							
Measurement Details	Run Count	Min	Мах	Average	Unita	Standard Deviation		
Transmitter Timing J Itter_1.0Vpp	a	0.924	1.045	1,0017	19 H	0.055		

Details	Tast Ress		Measured Value	High Limit	Unita	Margin	Rune
g Jitter_1.0Vpp	Paus	NA	1.045	10	ma)	LL N.A. HL: 8.955	1
Transmitter_Timin g_Jitter_1.0Vpp	Pass	NA	1.036	10	ns	LL: N.A. HL: 8.964	2
Transmitter Timin a Jitter, 1.9Ypp	Pass	NA	0.924	10	718	LL: N.A. HL: 9.076	
			nal as is - Don't Ch Type: BOTH, Hyste				

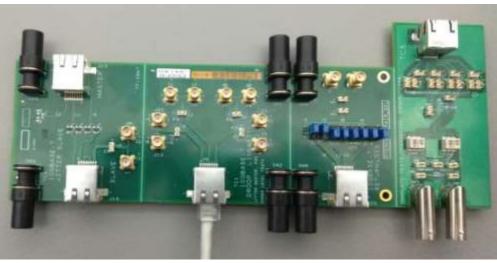

10BASE-T1L Testing

Tektronix Solutions

Hardware Platform

THE MOST FLEXIBLE AND CAPABLE SCOPE FOR AUTOMOTIVE APPLICATIONS

5 Series MSO	MSO54	MSO56	MSO58	MSO64	
Bandwidth	350 MHz,	500 MHz, ⁻ GHz	1 GHz, 2	1GHz- 8GHz	
Maximum Analog Channels	4	6	8	4	
Maximum Digital Channels (optional in 8 channel increments)	32	48	64	32	
Sample Rate (all A&D ch.)		6.25 GS/s		25GS/s	
Standard Record Length (all A&D ch.)		62.5	М		
Max. Opt. Record Length (all A&D ch.)		125	Μ		
Waveform Capture Rate		500,000	wfms/s		
ADC Resolution	12 bits				
Vertical Resolution	8 bits at 6.25 GS/s 12 bits at 3.125 GS/s Up to 16 bits w/ High Res				
Arbitrary/Function Generator	Up to 50 MHz (opt.)				
Integrated DVM & Trigger Freq. Counter	Free with	product reg	gistration		
Price Range	\$12	,600 – \$40,6	600		


Oscilloscope Logic Analyzer Arbitrary/Function Generator Protocol Analyzer DVM Trigger Frequency Counter

Signal Access

TDP1500 Probe

TF-XGbT Fixture

10BASE-T1L Compliance Solution

- Oscilloscope: MSO 5/6 Series
 - 350 MHz minimum bandwidth
- Software:
 - 5/6-CMINDUEN10: 10BASE-T1L compliance
 - Optional Advanced jitter software
- Probes: TDP1500 (2 required)
- Signal source: AFG31052
- Fixtures: TF-XGbT Ethernet test board

