

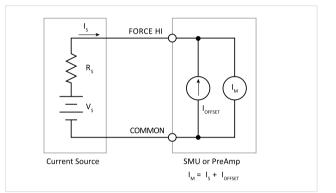
4200A-SCS 参数分析仪 优化低电流测量

应用指南

概述

许多关键应用要求能够测量到非常小的电流,如 pA 量级或更小的电流。这些应用包括测定 FET 的栅极漏 电流,测试灵敏的纳米电子器件,以及测量绝缘器件 和电容的漏电流。

4200A-SCS 参数分析仪配置 4200-PA 远程前置放大器时,具有最小 10 aA 分辨率(10⁻¹⁶)的特殊低电流测量能力。小电流的成功测量不仅取决于使用像 4200A-SCS 这样非常灵敏的电流表,还取决于在系统的 Clarius 软件中选择适当的设置,使用低噪声夹具和测试电缆,允许足够的积分时间,并使用相关技术 来防止影响精度的不必要电流。本文给出了 Keithley 最著名的测试方法建议,用于优化使用 4200A-SCS 进行低电流测量。


测量系统的偏置电流

建立超低电流测量系统的第一步是确定整个测量系统 的偏置和漏电流,包括 4200A-SCS 本身、连接电缆、 开关矩阵、测试夹具和探头。这确定了整个系统的噪 声下限,并设置了一个起点,以便在可能的情况下对 系统进行改进。首先测量源测量单元 (SMU) 的偏移量, 然后继续添加测量电路中的组件,直到除被测 (DUT) 外所有组件都连接上。测量直接使用 Clarius 软件控 制 4200-SMU 与 4200-PA 远程前置放大器来完成。

内部偏置

理想的电流表在输入端子为开路的情况下,回读电流 大小应为零。然而,现实情况中电流表在输入端开路 时确实有一些小电流流过。这种电流被称为输入偏置 电流,是由有源器件的偏置电流和通过仪器内部绝缘 体的漏电流产生的。SMU内产生的偏置电流可以参考 4200-SMU的技术规格。如**图1**所示,输入偏置电流 加到被测电流上,因此仪表测量值为两个电流之和:

 $I_{\text{MEASURE}} = I_{\text{SOURCE}} + I_{\text{OFFSET}}$

图 1. SMU 的输入偏置电流

测量带有 4200-PA 前置放大器的每个 4200-SMU 的 偏置时,除了金属帽外,Force HI 和 Sense HI 端子 没有任何连接。这些金属帽包含在系统备件中。在进 行任何测量之前,应将前置放大器连接到 SMU 上, 并前置放大器的 Force HI 和 Sense HI 端子接上金属 帽,对 SMU 预热至少一小时。偏置电流可以使用"Low Current Project"项目来测量,该项目可以在项目库 的选择视图中找到,或直接搜索"Low Current"获取。 图 2 显示了 Clarius 软件应用程序中的这个项目。

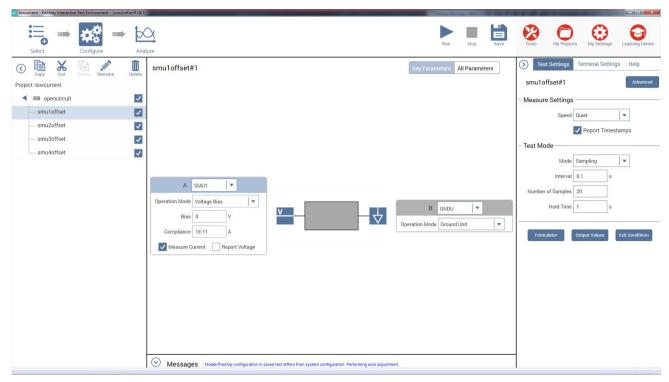


图 2. Low Current Project 在 Clarius 应用中

打开这个项目,选择*SMU1offset*测试项,测量 SMU1的偏置电流。选择Analyze,然后运行测试。 结果应该类似于**图 3**所示的图形。可能需要使用自动 缩放功能来适当地缩放曲线。右键单击图形可以找到 自动缩放功能。当 4200-PA 前置放大器连接到 SMU 时,偏置电流应该在 fA 量级内。偏置电流可以是正的, 也可以是负的。可用 SMU 标的的电流表规格来验证 这些结果。

应该重复此操作对系统中的每个 SMU 进行单独的测量。*Low Current Project* 会对四个带前置放大器的 SMU 进行偏置电流测量的测试。

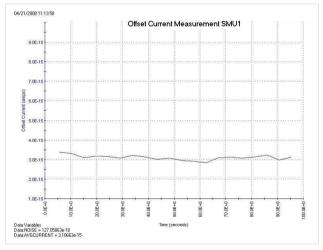


图 3. SMU1 的偏置电流测量

输入偏移电流规格可以通过在 Clarius 中执行自动校 准程序来进行优化。执行 SMU 自动校准,请在"Tools" 菜单中选择"SMU auto calibration"。在执行自动 校准之前,至少需要开机预热 60 分钟。除了金属帽 外,SMU 的 force HI 和 sense HI 端子上不应连接任 何东西。自动校准程序调整系统中所有 SMU 的所有 源和测量功能中的电流和电压偏置。这里不要与全 系统校准相混淆,应每年在授权的机构完成一次对 4200A-SCS 的全系统校准。

一旦执行了 SMU 自动校准,就可以对偏移电流进行 重复测量。

外部偏置

一旦电流表的偏置已经确定,在添加测试电路的每一 个环节后,通过重复电流(加载 0V)对时间的图来验 证系统其余部分的偏置。每次重复测试时,之前的运 行都保存在历史运行面板中。最后,对处于"UP"位 置的探头末端或对未连接设备的测试夹具进行测量。 这一过程将有助于确定故障点,如电缆短路或测量电 路的不稳定。但是,要注意连接和断开电缆时会在电 路中产生电流。对于进行超低电流测量,在改变测试 电路中的连接后,可能需要等待几分钟到几小时使寄 生电流衰减。**图 4**显示了 1) 仅接入 force HI 端子的 SMU 的偏移量; 2) 前置放大器上仅带三轴电缆; 3) 通过 Keithley 7174A 低电流开关矩阵到探针台上处于 "UP"位置的探头。

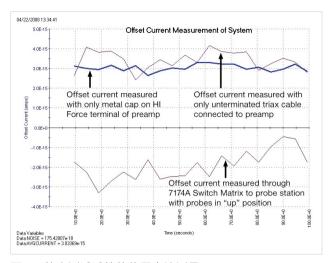


图 4. 整个测试系统的偏置电流测量

在生成电流 - 时间图时,通过施加测试电压来重复此 测试,以确定测量电路中的任何泄漏电路。相较施加 零伏偏置,使用测试电压加载到 DUT上进行实际测量。 现在测试夹具和电缆中的任何泄漏电流将被检测到并 体现在图表中。如果泄漏电流看起来过高,可以对测 量电路进行调整,以减少泄漏电流。参考标题为"泄 漏电流和 Guard"的章节,其中描述了减少泄漏电流 的方法。

测量误差的来源和减少测量误差的方 法

一旦确定了电流偏移、泄漏电流和任何不稳定性,采 取措施减少测量误差将有助于提高测量精度。这些误 差来源包括稳定时间不足、静电影响、泄漏电流、摩 擦起电效应、压电效应、污染、湿度、接地回路、光 线和源内阻。**图5**总结了本节讨论的一些产生电流的 量级。

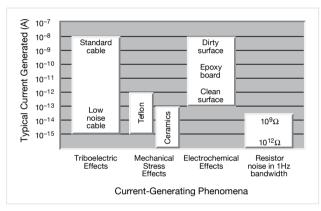


图 5. 产生电流的典型幅度

稳定时间和时间菜单设置

在进行小电流和高电阻测量时,测量电路的稳定时间 特别重要。稳定时间是开启测量时在施加或改变电流 或电压后达到稳定所需的时间。影响测量电路稳定时 间的因素包括并联电容(C_{SHUNT})和源电阻(R_s)。 并联电容是由连接的电缆、测试夹具、开关和探头造 成的。DUT 的内阻越高,稳定时间越长。并联电容和 内阻如**图 6** 中的测量电路所示。

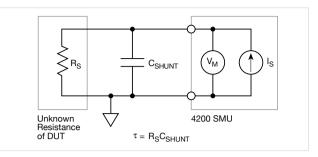


图 6. SMU 测量电路包括 C_{SHUNT} 和 R_s

稳定时间为 RC 时间常数 τ 的结果,式中:

 $\tau = R_s C_{SHUNT}$

计算稳定时间的示例如下,设C_{SHUNT}=10pF,R_s=1TΩ,则: τ=10pF×1TΩ=10s

因此,需要 5τ 或 50 秒的稳定时间,将读数 波动稳定 到最终值的 1% 以内! **图 7**显示了进入 RC 电路的阶 跃电压的指数响应。经过一个时间常数(τ=RC)后, 电压上升到最终值的 63% 以上。

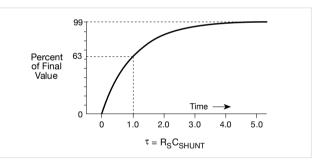


图 7. RC 电路对阶跃电压的指数响应

要成功地进行低电流测量,为每次测量添加足够的时间是非常重要的,特别是扫描电压时。可以在 Sweep Mode 的 sweep delay 字 段 或 sampling Mode 的 interval time 字段的 test setting 菜单中进行设置。 为了验证要增加多少间隔时间,可以通过绘制电流与 时间到阶跃电压的关系来测量 DUT 的稳定时间。步 进电压应该是 DUT 实际测量中使用的偏置电压。在 *Low Current Project* 测试项中可以用来进行稳定时 间的测量。 测试设置菜单中的采样点数可能需要增加,以确保稳 定读数将显示在图形上。在进行低电流测量时,使用 Quite Speed Mode 或添加额外的滤波。需要注意的 是,有一个去除噪声和测试速度的权衡。滤波和延迟 越多,噪声就会越少,但测量速度就会越慢。

静电干扰和屏蔽

当带电物体接近被测电路时,就会发生静电耦合或干 扰。在低阻抗水平下,干扰的影响并不明显,因为电 荷会迅速消散。然而,高电阻材料不允许电荷快速衰 减,这可能导致测试结果的不稳定、有较大的噪声。 通常,当电流测量≤1nA或电阻测量≥1GΩ时,静 电干扰是测量中必须考虑的一个问题。

为了减少电场的影响,可以将被测量的电路封闭在静 电屏蔽壳体中。图8说明了100GΩ电阻器的非屏蔽 和屏蔽测量之间的巨大差异。未屏蔽的测量比屏蔽的 测量噪声大得多。

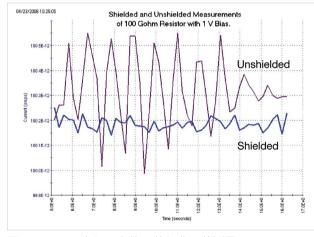


图 8.100GΩ 电阻器上的屏蔽与非屏蔽测量

屏蔽可以只是一个简单的金属盒或网格罩,包裹测试 电路。商用探针台通常将敏感电路封闭在静电屏蔽内。 屏蔽连接到测量电路 LO 端,不一定接地。在 4200SMU 的情况下,屏蔽连接到如**图 9** 所示的 Force LO 端子。

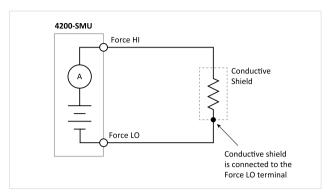


图 9. 屏蔽装置高阻抗测试

最小化由于静电耦合而产生的误差电流:

- 屏蔽 DUT 并将外壳和测试电路的公共端,
 4200A-SCS 的 Force LO 端子短接
- 所有带电物体(包括人)和导体远离测试电路的敏感区域
- 避免在测试区域附近移动和发生振动

泄漏电流和 Guard

泄漏电流是当施加电压时流经绝缘电阻或从中泄漏的 错误电流。当 DUT 的阻抗与测试电路中绝缘体的阻 抗相当时,这种错误电流就成为一个问题。为了减少 泄漏电流,需要在测试电路中使用质量好的绝缘材料, 降低测试实验室的湿度,并使用保护技术。

Guard 是一个由低阻抗源驱动的导体,其输出与高阻 抗终端处于或接近相同的电位。Guard 端子用于保护 测试夹具和电缆的绝缘电阻和电容。Guard 端子是**图 10** 所示的三轴连接器 / 电缆的内部屏蔽。

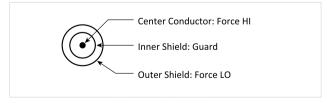


图 10.4200A 三同轴接口、线缆定义

Guard 不应与屏蔽混淆。屏蔽通常意味着使用金属外 壳来防止静电干扰影响高阻抗测试电路。Guard 意味 着使用一个附加的低阻抗导体,与高阻抗电路保持相 同的电位,它将拦截任何干扰电压或电流。Guard 并 不一定提供屏蔽。下面的段落概述了两个 Guard 的例 子:1)使用 Guard 来减少由于测试夹具造成的泄漏, 2)使用 Guard 来减少由于布线造成的泄漏电流。

图 11 显示了 Guard 如何消除可能流过测试夹具中隔 离绝缘材料的泄漏电流。在**图 11a** 中,泄漏电流(I_L) 流过隔离绝缘材料(R_L)。该泄漏电流加到 DUT(I_{DUT}) 的电流中,由 SMU 电流表(I_M)测量,对低电流测量 的精度产生不利影响。

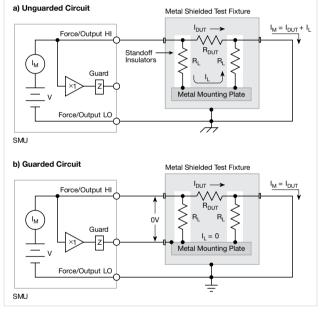


图 11. 使用 Guard 以减少测试夹具的泄漏

图 11b 中,金属挂板连接到 SMU 的 Guard 端子上。 绝缘固定支架的顶部和底部的电压几乎处于相同的电 位(0V 降),因此不会有泄漏电流流过隔板影响测量 精度。出于安全目的,金属屏蔽必须连接到接地点, 因为底部的金属安装板将在 Guard 电位。 Guard 也可用于减少布线中的泄漏电流。图 12 说明 了驱动保护如何防止电缆的泄漏电阻降低低电流测量 的性能。在无保护配置中,同轴电缆的泄漏电阻与 DUT (R_{DUT}) 平行,产生不需要的泄漏电流 (I_L)。这种泄 漏电流会削弱微弱电流测量。

在保护电路中,三轴电缆的内屏蔽连接到 SMU 的 Guard 端子上。现在这个屏蔽由一个增益单位、低 阻放大器(Guard)构成的驱动。Force HI 端子和 Guard 端子之间的电位差接近 0V,因此消除了泄漏电 流(I_L)。

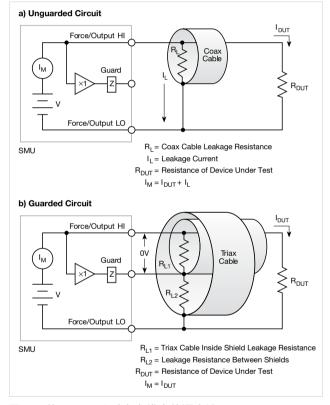


图 12. 使用 Guard 减少电缆中的漏电流

对比使用三轴电缆和同轴电缆进行高阻测量时的结 果,**图 13** 显示了加载 10V 阶跃电压到 100GΩ 电阻, 电流 vs. 时间的测试结果。三同轴电缆启用 Guard,从

应用指南

两个方面改进测量:1)它降低了有效的电缆电容, 从而降低了 RC 时间常数或测量的稳定时间,2)它防 止电缆的泄漏电阻提升了测量精度。

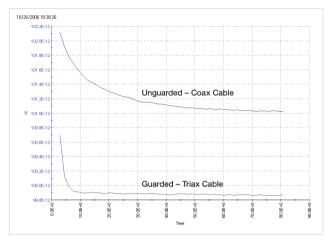


图 13. 使用同轴电缆和三轴电缆测量高阻的结果对照

从**图 13** 的图表中可以看到,使用带保护的三轴电缆 可以在测量电流具有更低的泄漏电流(小几 pA)和 更快的稳定时间(大约快十倍)。

如果 SMU 必须连接到带有 BNC 连接器的测试夹具, 则使用 Keithley 三轴电缆连接 SMU 和测试夹具,然 后使用三同轴转 BNC 的适配器(去除 Guard)将电 缆连接到测试夹具。

SMU 连接到 DUT

除 了 在 连 接 DUT 时 使 用 屏 蔽 和 Guard 外, 4200A-SCS 与设备的接入位置也是非常重要的。SMU Force HI 和 Force LO 端子连接不当会导致电流偏移, 测量结果不稳定。这些误差是由共模电流引起的。

一般情况下,始终将 SMU 的高阻端子(Force HI) 连接到被测电路的最高电阻点上。同样,始终将 4200A-SCS 的低阻端子(Force LO)连接到被测电路 的最低电阻点。最低电阻点可以是一个公共端子或接 地点。如果 Force HI 端子连接到低阻端,那么共模电 流可以通过测量电路,从而影响测试结果。 图 14 给出了正确的和不正确的测量连接。图 14a 为 正确的连接方式,因为 4200-SMU 的 Force HI 端子 连接在晶圆上的被测器件的栅极上,Force LO 端子连 接在接地卡盘上。晶圆上的栅极端子是最高阻抗点, 接地的卡盘是低阻抗点,所以这个电路是正确连接。 注意,共模电流从 SMU 的 Force LO 端子流向接地卡 盘;但是,电流不会流过安培计,因此不会影响测量。

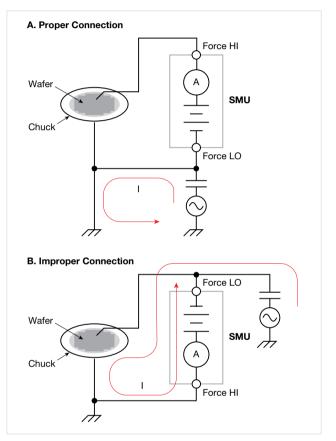


图 14. 使用同轴电缆和三轴电缆测量高阻的结果对照

图 14b 显示了将高阻栅极端子与 SMU 的 Force LO 端子连接,接地卡盘和 SMU 的 Force HI 端子连接的 不恰当连接方式。在这种情况下,共模电流将流过 SMU 以及 DUT。这将导致测试结果的不准确,甚至 无法稳定测量。

摩擦电效应

摩擦电流是由导体和绝缘体之间因摩擦产生电荷而形成的。在这里,自由电子与导体摩擦,产生电荷不平衡,导致电流流动。这种噪声电流可以在几十 nA 的范围内。图 15 展示了摩擦电流的流动情况。

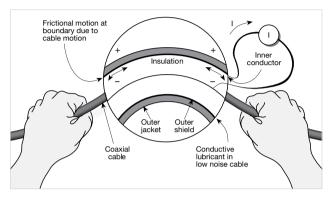


图 15. 摩擦电效应产生的偏置电流

与 4200A-SCS 配套使用的三轴电缆通过在外层屏蔽 下使用石墨浸渍绝缘材料,大大降低了这种影响。石 墨供润滑和一个导电圆筒,以均衡电荷,并将电缆运 动产生的摩擦效应产生的电荷降至最低。然而,即使 是这种类型的三轴电缆,在受到振动、膨胀或收缩时 也会产生一些噪声。因此,所有连接都应尽可能的短, 远离温度变化(这会产生热膨胀力),最好用胶带或 轧带将电缆固定到非振动表面,如墙壁、工作台或刚 性结构上。

还应采用其他技术来尽量减少移动和振动问题:

- 移除振动源,如电机、泵和其他机电设备,或者使 用机械减震
- 安全地安装或固定电子元件、电线和电缆
- 安装前置放大器时,尽可能靠近被测

压电和存储电荷效应

当某些晶体材料使用绝缘端子和互联硬件固定时,施 加机械应力就会产生压电电流。在某些塑料中,储存 的电荷使材料表现出类似于压电材料的特性。**图 16** 所 示为带有压电绝缘体的端子的一个例子。

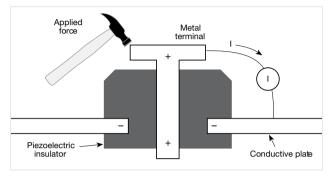


图 16. 压电效应产生的偏置电流

为了使这些影响最小化,需要从绝缘体消除机械应力 和使用尽可能小的压电和储存电荷的绝缘材料。

污染和湿度影响

高湿度或离子污染可显著降低测试夹具的绝缘电阻。 高湿度条件下会发生冷凝或吸水,而离子污染可能是 人体油脂、盐或焊料助焊剂的结果。绝缘电阻的降低 会对高阻抗测量产生严重的影响。此外,湿度或湿气 可以与任何污染物结合,产生电化学效应,从而产生 偏置电流。例如,常用的环氧印刷电路板,当蚀刻液、 助熔剂或其他污染物未被彻底清洗时,可在导体之间 产生几 nA 的电流(见**图 17**)。

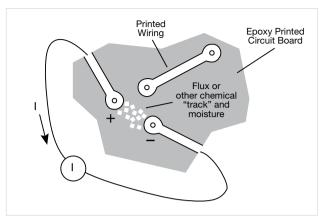
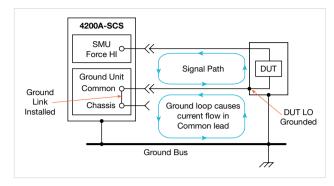


图 17. 离子污染和湿度产生的电流


为了避免污染和湿度的影响,选择抗水分吸收的绝缘 子,并保持湿度在中等水平(理想情况下<50%)。此外, 确保测试系统中的所有组件和测试夹具保持清洁和无 污染。

地回路

地回路可以产生杂散信号,可能是直流偏置或 AC 信 号(通常是工频或工频的倍数)。接地回路是由测试 电路中的多个接地引起的。接地回路的一个典型例子 是将多个仪器插入不同仪器架上的电源排。通常,接 地点之间存在微小的电位差,这可能会导致生产大电 流,并产生意想不到的电压下降。

图 18 所示的配置显示了通过将 4200A-SCS 信号公共 (Force LO) 和 DUT LO 连接到地而构成的接地回路。 回路中流过的大接地电流会遇到小电阻,要么在导体 中,要么在连接点上。这个小电阻会导致电压下降, 从而影响性能。

为了防止接地回路,测试系统应该只在一个点接 地。如果不能拆除 DUT 接地,则应拆除 4200A-SCS GNDU 公共端子与机箱接地之间的接地链路,如**图** 19 所示。

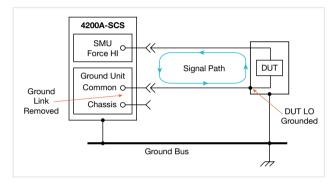


图 19. 消除接地回路

如果怀疑有接地回路,请将可疑仪器从AC电源中拔下, 并尝试进行微电流测量以验证问题已经消失。要消除 接地回路,应尽可能少地做接地,最好不超过一个。

光

一些元件,如二极管和晶体管是光敏器件。因此,这 些元件必须在无光环境中进行测试。为了确保测量精 度,检查测试夹具是否在门铰链、管道入口点和连接 器或连接器面板上有光泄漏。

噪声和源阻抗

噪声会严重影响灵敏的电流测量。DUT 的源电阻和源 电容都会影响 SMU 的噪声性能。

DUT 的源电阻将影响 SMU 反馈电流表的噪声性能。 随着源电阻的减小,安培计的噪声增益也随源电阻的 减小将会增加。

应用指南

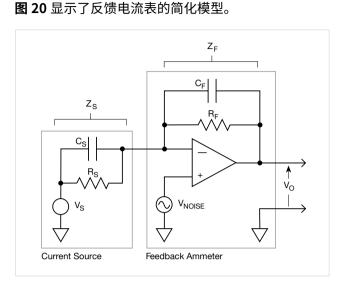


图 20. 反馈电流表的简化模型

在这个电路中:

R_s= 源电阻

C_s=源电容

V_s= 源电压

V_{NOISE} = 电流表的噪声电压

R_F=反馈电阻

C_F=反馈电容

电路的噪声增益可以用这个公式给出:

Output V_{NOISE} = Input V_{NOISE} $(1 + \frac{R_F}{R_s})$

注意,随着源电阻(R_s)的减小,输出噪声增大。因 为降低源电阻会对噪声性能产生不利影响,所以有基 于电流测量范围的最小推荐源电阻值,总结在**表1**中。

表 1. 最小推荐源电阻值

Range	Minimum Recommended Source Resistance
1pA to 100pA	1GΩ to 100GΩ
1nA to 100nA	1M Ω to 100M Ω
1μA to 100μA	1kΩ to 100kΩ
1mA to 100mA	1Ω to 100Ω

DUT 的源电容也会影响 SMU 的噪声性能。一般来说,随着源电容的增大,噪声增益也会增大。虽然最大源 电容值是有限制的,但通常可以通过将电阻或正向偏 置二极管串联到 DUT 上来测量更高的源电容值。二极 管的作用就像一个可变电阻,当源电容的充电电流高 时,它的值低,然后随着电流随时间减小,它的值增加。

补偿偏置

在确定外部误差并减少后,如果可能,可以从未来的 测量中减去测试系统的内部和外部偏移量。首先,使 用上述的隔绝输入端子执行 SMU 自动校准。然后,确 定每个 SMU 到探针尖端的偏移量。这个平均偏移电流 可以使用软件中的 Formulator 工具从其他项目的后续 电流测量中减去。为了进行极低电流测量,应定期(至 少每月)重新测量平均偏置电流。

结论

当 配 置 可 选 的 4200-PA 远 程 前 置 放 大 器 时, 4200A-SCS 参数分析仪可以精确测量皮安或更小的电 流。要测量整个测量系统的偏置电流,以确定系统的 局限性,因此可以在必要时进行调整。通过使用诸如 屏蔽、Guard 和仪器适当接地等技术,以及在 Clarius 软件中选择适当的设置,包括允许足够的稳定时间, 可以减少测量误差的来源。Keithley 的《低电平测量 手册》提供了关于最佳低电流测量技术的进一步原理 性描述。

相关阅读推荐

Keithley:

Model 4200A-SCS Reference Manual / 4200A-SCS 参 考手册

Low Level Measurements Handbook/低电平测量手册

如需所有最新配套资料,请立即与泰克本地代表联系!

或登录泰克公司中文网站:tek.com.cn

泰克中国客户服务中心全国热线:400-820-5835

泰克科技(中国)有限公司

上海市浦东新区川桥路1227号 邮编:201206 电话:(8621)50312000 传真:(8621)58993156

泰克成都办事处

成都市锦江区三色路38号 博瑞创意成都B座1604 邮编: 610063 电话: (86 28) 8620 3028 传真: (86 28) 8527 0053

泰克北京办事处

北京市朝阳区酒仙桥路6号院 电子城•国际电子总部二期 七号楼2层203单元 邮编: 100015 电话: (86 10) 5795 0700 传真: (86 10) 6235 1236

泰克西安办事处

西安市二环南路西段88号 老三届世纪星大厦26层L座 邮编:710065 电话:(86 29)8836 0984 传真:(86 29)87218549

泰克上海办事处

上海市长宁区福泉北路518号 9座5楼 邮编: 200335 电话: (86 21) 3397 0800 传真: (86 21) 6289 7267

泰克武汉办事处 武汉市洪山区珞喻路726号 华美达大酒店718室 邮编: 430074 电话: (86 27) 8781 2760

泰克深圳办事处 深圳市深南东路5002号 信兴广场地王商业大厦3001-3002室

后兴,场地主商业入厦3001-3002 邮编: 518008 电话: (86 755) 8246 0909 传真: (86 755) 8246 1539

泰克香港办事处

香港九龙尖沙咀弥敦道132号 美丽华大厦808-809室 电话: (852) 3168 6695 传真: (852) 2598 6260

更多宝贵资源,敬请登录:TEK.COM.CN

© 泰克公司版权所有,侵权必究。泰克产品受到已经签发及正在申请的美国专利和外国专利保护。本文中的信息代替所有以前出版的材料中的信息。本文中的技术数据 和价格如有变更,恕不另行通告。TEKTRONIX 和 TEK 是泰克公司的注册商标。本文中提到的所有其它商号均为各自公司的服务标志、商标或注册商标。 071116 SBG 1KC-60636-0

